
When we first started teaching computer science, we discovered two important things. We

found that existing curriculum for beginners focused mostly on solving math problems or

constructing geometric shapes and that there was a certain type of student that signed up for

computer science classes and these students were almost always boys. We wondered whether a

different approach to teaching the basics of computer programming would be more engaging

and also attract a larger variety of different types of students, both boys and girls.

We decided to focus on what knowing how to program allowed you to do and create. Ultimately

all programs are created to solve a problem or serve a purpose. The problem may be local or

global, the purpose may be anything from helping doctors treat patients to pure entertainment.

By starting with interesting problems the students wanted to solve, they were much more

engaged in learning to code. They saw coding skills as an important part of building creative

solutions.

With this approach, we found that not only did we get more girls taking the course, we also got

a more diverse group of boys. Opportunities for collaboration increased, and all the students

got to see where their talents and skills meshed with others' interests and experiences, to make

a whole that was greater than the sum of its parts.

We are now at the point where a third of the students taking computer science are girls, and

more importantly, students are coming out of the course not only with an understanding of

code, but also knowing how to read through professionally written code, and take an idea from

brainstorming through prototyping to build something that matters.

Authors Mary Kiang and Douglas Kiang-

Course Introduction

This is an introduction to coding and computer science by way of making and design, using the

revolutionary new micro:bit microcontroller board, and Microsoft's easy and powerful

MakeCode block-based coding environment. It is a project-based curriculum with a maker

philosophy at its core; the idea is that by making physical objects, students create a context for

learning the coding and computer science concepts.

Introduction

 Introduction Page 1

Micro:bits may be purchased from these resellers: http://microbit.org/resellers (you will

need 1 micro:bit per student for this course). The "Micro:bit Go Kit" includes a battery

pack and USB cable as well.

•

Alligator/Crocodile clip cables○

Headphone/earbuds (for audio)○

Servo motor (for movement)○

Croc clip to Male connector (for connecting to Servo motor)○

Other optional suggested micro:bit accessories include:•

 Introduction Page 2

http://microbit.org/resellers

Croc clip to Headphone jack adapter (http://microbit-accessories.co.uk/)○

MakeCode for the micro:bit is a free web app: https://makecode.microbit.org•

When students complete this course they will have a good understanding of computer science

concepts that can serve as the foundation for future study. They will develop powerful design

skills that they can use in future projects of all types, whether they are designing 3D printed

prototypes or creating apps that serve a real world purpose.

This course is targeted to middle school grades 6-8 (ages 11-14 years). It is also written for

teachers who may not have a Computer Science background, or may be teaching an "Intro to

Computer Science" course for the first time.

This course takes approximately 14 weeks to complete, spending about 1 week on each of the

first 11 lessons, and 3 weeks for students to complete the final project at the end. Of course,

teachers should feel free to customize the curriculum to meet individual school or district

resources and timeframe.

Making 1.

Algorithms 2.

Variables 3.

Conditionals 4.

Iteration 5.

Review/Mini-Project 6.

Coordinate Grid System7.

Booleans8.

Overall Course Scope & Sequence:

 Introduction Page 3

http://microbit-accessories.co.uk/
https://makecode.microbit.org

Booleans8.

Bits, Bytes, and Binary 9.

Radio 10.

Arrays11.

Independent Final Project 12.

Topic Introduction•

•

•

•

 •

 •

•

Each of the 12 lessons is comprised of the following parts:

Topic Introduction

The introduction to each lesson will tell you what learning objectives are covered in the lesson,

and presents an overview of that lesson's topic. Some lessons have a specific activity that can

help introduce the topic to students in a fun way.

Unplugged Activity (30 min)

Each lesson starts with an unplugged activity, which doesn't require a computer or a micro:bit.

It's a chance to get students up and moving around, and is designed to be a fun introduction to

the computer science concept covered in that lesson. Unplugged activities are an important way

to demonstrate new concepts in a tangible, often kinesthetic, way. Since so many computer-

based topics are abstract, unplugged activities are very effective at fostering understanding that

students will then demonstrate in later activities.

Micro:bit Activity (45–60 min)

Each lesson also contains a micro:bit activity, which we informally refer to as a "birdhouse"

activity, after the innumerable wooden birdhouses so many of us made in wood shop as a way

to master basic skills. Each lesson's micro:bit activity is an example that walks students step-by-

step through building a project that demonstrates that lesson's topic. By the time students finish

the activity, they will have written code that they can use in a different project of their own

design.

Some students will finish the activity more quickly than others. Those students can then be a

helpful resource for their classmates, or they can challenge themselves by modifying, or

"modding" the activity to do something different. We have provided examples and suggestions

at the end of many of these activities, and feel free to suggest your own (or encourage your

students to come up with their own ideas!)

Project (60–120 min)

After presenting the concept in an unplugged fashion, then walking students through a

demonstration activity, it is time to challenge students to use those skills to create something

that is creative and original. Students will be working on their projects in a "collaboratively

 Introduction Page 4

https://www.csteachers.org/?page=CSTA_Standards

that is creative and original. Students will be working on their projects in a "collaboratively

independent" way, which means each student is responsible for turning in his or her own

project, but are encouraged to work together and help each other while doing so. Some form of

reflection is an important part of documenting the learning that has taken place, and it's a great

idea to share out the final projects and reflections, either at an event or on a blog.

There are also a series of Project Mods that students can do to extend the project they have

created. These are useful for students who already have some experience with coding or who

want an extra challenge.

Assessment

A rubric is provided for each project that can be customized according to what students are

being asked to demonstrate. For the Activities we just expect students to do them, so those are

fairly simple to check off. For the Projects, however, there is often a range of grades based on

how closely the project meets the specifications of the assignment.

Standards

Where applicable, we have mapped each of the lessons to the Computer Science Teachers

Association (CSTA) K-12 Standards, which are US nationally recognized standards for computer

science education.

 Introduction Page 5

We have included some additional reference books and materials if you are interested in learning more about Maker Education,

Physical Computing or Design Thinking in the classroom.

Invent To Learn •

Making, Tinkering, and Engineering in the Classroom

By Sylvia Libow Martinez & Gary Stager

Launch•

Using Design Thinking to Boost Creativity and Bring Out the Maker in Every Student

by John Spencer and AJ Juliani

The Innovator's Mindset•

Empower Learning, Unleash Talent, and Lead a Culture of Creativity

by George Couros

The Big Book of Makerspace Projects•

Inspiring Makers to Experiment, Create, and Learn

by Colleen Graves

If you have feedback for the Microsoft MakeCode team, you can fill our their survey form here: https://aka.ms/microbitfeedback

The support site for the micro:bit is located here: https://support.microbit.org/

References

 Introduction Page 6

http://inventtolearn.com/
http://thelaunchcycle.com/
http://georgecouros.ca/blog/archives/5715
https://colleengraves.org/bigmakerbook/
https://aka.ms/microbitfeedback
https://support.microbit.org/

Douglas Kiang is a speaker, teacher, and workshop presenter with twenty-seven years of teaching experience in

independent schools at every grade level. He currently teaches high school computer science at Punahou

 H , H D ’ , I ,

Harvard and is a Microsoft Innovative Educator.

You can follow him on Twitter at @dkiang.

Mary Kiang has been teaching for over twenty-five years at elementary, middle, and high school levels. She

also developed curriculum in the Education Department of the Museum of Science in Boston. She currently

teaches 6th grade Math/Science at Punahou School. Mary is a former programmer for Houghton Mifflin and

D & B ’

founder of GO Code!, an organization that supports girls and young women in exploring coding and STEM.

About The Authors

 About Page 7

This Lesson introduces the Micro:bit as a piece of hardware that has a specific size and weight, and

generally must be supported and incorporated as an essential component of a tangible artifact. Focus on

incorporating the physical Micro:bit into a basic making activity.

Lesson Objectives

Exercise creativity and resourcefulness by coming up with ideas for using simple household materials

 ’ z

•

Test and iterate using different materials and sizes in order to create an optimal design to house the

micro:bit and battery pack

•

Learn how to download programs and move them to the Micro:bit file to run on the Micro:bit.•

Use the design thinking process to develop an understanding for a problem or user need.•

 “ ” •

 …

Introduction: The Micro:bit is for making•

Unplugged Activity: Design Thinking•

Micro:bit Activity: MakeCode download•

Project: Micro:pet•

Project Mods•

Assessment: Rubric •

Standards: listed•

Lesson Plan Structure

Introduction

The Micro:bit is a great way to teach the basics of programming and computer science. The Microsoft

MakeCode block-based coding environment is a powerful and intuitive way to make the Micro:bit react to

all sorts of input, and you can introduce fundamental concepts such as iteration, conditional statements,

and variables using MakeCode.

Students often focus primarily on the 5x5 LED screen for providing output. Although this is the most

directly accessible way to see a reaction to some kind of input, there are many more creative possibilities

 “ ” ,

creations.

Making with Micro:bit

 01.Making Page 8

 ’ I ’

common household supplies. Because the micro:bit is so lightweight, and supports so many sensors, it can

be incorporated easily into a physical design as long as students plan ahead for its size and weight. One of

 q “W ?”

I ’ , “ ”

We purposely start this course with a lesson on Making and the physical nature of the micro:bit, because it

is important to set the tone for the whole course that this is a class about making, building, crafting and

construction. It helps if you have an art room available where kids can work, or arts and crafts supplies in

your classroom that kids can use to build.

pizza boxes•

scrap cardboard•

colored construction paper•

colored duct tape•

scissors•

pipe cleaners•

stickers•

feathers•

string•

markers•

Some common making supplies to gather:

 01.Making Page 9

Objective: To introduce a process of design that starts with talking to one another. Whatever

you build with code should serve a purpose or fill a need. Sometimes what you build will make

the world more beautiful, or help somebody else. Our design process, based on a process called

design thinking, can give students a specific framework for thinking purposefully about design.

Overview: In this activity, students will interview each other about their ideal pet. They should

take notes.

 ’ ,

create prototypes that get you closer and closer to the best solution.

Materials:

Pairs of students, something to take notes on

Getting started:

Pair students up with each other. One is Student A, the other is Student B. The goal of this

activity is to gather information from their partner that will help them to design a Micro:bit pet

for their partner.

5 minutes: Student A interviews Student B. The goal is to find out what Student B considers to

be their ideal pet. Student A should mostly listen, and ask questions to keep Student B talking

for the entire time. Here are some questions to start with:

Do you have a pet? What is it?•

What do you like about your pet? What do you dislike?•

Is there anything you wish your pet could do? Why?•

Tell me about your ideal pet.•

5 minutes: Student B interviews Student A, as above.

 q “W ?”

Unplugged: Design Thinking

 01.Making Page 10

https://en.wikipedia.org/wiki/Design_thinking

 q “W ?”

as possible. Your partner will tell you about his or her ideal pet, but you are really finding out

 ’ W ,

people. So we need to start with understanding them first.

5 minutes: Student A and Student B review their notes, and circle anything that seems as if it will

be important to understanding how to create the ideal pet for their partner. Circle ideas, advice,

anything that could be helpful when they start building. Then, they should use what they have

discovered about their partner to fill in the blanks:

"My partner needs a __________________ because __________________."

This definition statement should draw some conclusions about their partner's need based on the

conversation they have had with that person.

5 minutes: Student A and Student B sketch at least 5 ideas of pets that would meet their

partner's needs. Stick figures and diagrams are okay. At this point, quantity is more important

than quality. Students shouldn't limit themselves to real animals; unicorns and mashups are

totally fine!

Make sure students keep their notes and sketches! They will use them in the project for this

lesson.

Examples

 01.Making Page 11

 01.Making Page 12

 01.Making Page 13

Micro:bit Activity: Installing a Microsoft MakeCode Program on the Micro:bit

Objective: Learn how to download programs from the MakeCode tool.

Overview: Students will create a simple program in Microsoft MakeCode and download it to

their Micro:bit using a USB cable.

For this activity, students will each need a Micro:bit, a micro-USB cable, a computer, and a

battery pack.

Download this file to your computer (right-click, Save As):

microbit-Mi
croPet

Open a browser window to makecode.com, and select the micro:bit code editor

From the top left corner of the screen, select the Projects Menu, and click on Import File.

Select the file that you saved on your computer in the previous step.

Activity: Installing a Program

 01.Making Page 14

https://makecode.com/

Select the file that you saved on your computer in the previous step.

The program should look like the following in MakeCode.

It shows a repeating series of faces:

basic.forever(() => {
 basic.showIcon(IconNames.Happy)
 basic.pause(5000)
 basic.showIcon(IconNames.Sad)
 basic.pause(5000)
})

MicroPet

 01.Making Page 15

https://makecode.microbit.org/_38yJ1PAkuKPV

Simulator - on the left side of the screen, you will see a virtual micro:bit that will show what

your program will look like running on a micro:bit. This is helpful for debugging, and

instant feedback on program execution.

•

Toolbox - in the middle of the screen, there are a number of different categories, each

containing a number of blocks that can be dragged into the programming workspace on

the right.

•

Workspace - on the right side of the screen is the Programming Workspace where you will

create your program. Programs are constructed by snapping blocks together in this area.

•

Tour of Microsoft MakeCode

The color of the blocks identifies their category. All of the blocks that make up the program

above come from the Basic Toolbox category, which is light blue.

Downloading a MakeCode Program to the micro:bit

 ’ B

micro-USB cable. The micro:bit will draw power from your computer through the USB

connection, or you can connect an optional battery pack so it can function even after it is

unplugged from the computer. Once plugged in, the micro:bit shows up on your computer like

a USB flash drive.

 01.Making Page 16

a USB flash drive.

Click the purple Download button in the lower left of the MakeCode screen. This will download

the file to your computer, to the location where your browser is set to save downloads.

To move the program to your micro:bit, drag the downloaded "microbit-xxxx.hex" file to the

MICROBIT drive, as if you were copying a file to a flash drive. The program will copy over, and it

will begin running on the micro:bit immediately.

The micro:bit will hold one program at a time. It is not necessary to delete files off the micro:bit

before you copy another onto the micro:bit; a new file will just replace the old one.

For the next project, your students should attach the battery pack (it takes 2 AAA batteries) to

the micro:bit using the white connector. That way they can build it into their design without

having to connect it to the computer.

 01.Making Page 17

 01.Making Page 18

Project

This project is an opportunity for students to create a micro:pet for the partner they interviewed in the

Unplugged activity. They should review their notes and try to summarize what their partner finds appealing in a

pet. Then, they should use whatever materials are available to create a prototype of a pet their partner would

like.

We often ask students to sketch a few designs on paper first, then consult with their partner to see which

aspects of those designs they find most appealing. The purpose of prototyping is to gather more feedback to

 “I I , I I B…”

 ’ •

Supports the micro:bit and its battery pack•

Allows you to easily access the micro:bit to turn it on and off•

Build a micro:pet that:

Your design should use whatever materials are available to support the micro:bit so that its face is showing. You

can be creative and decide how to mount the board, and how to decorate your critter.

Will it be an animal? A plant? A robot? A bug?•

Will it have any moving parts?•

If it moves, how can you hold the micro:bit securely?•

Think about the following questions when you construct it:

Some photos of sample micro:pets below!

Find a way to make part of the animal move.•

Give your animal a natural habitat.•

Create a way to carry your animal.•

Create an animal that reacts when you pet it or move it (find a way to detect when the micro:bit is moved

or when its position changes in a certain way.)

•

Ideas for Mods

Reflection

Summarize the feedback you got from your partner on your idea. How would you revise your design, if

you were to go back and create another version?

•

What was it like to have someone designing a pet for you? Was it a pet you would have enjoyed? Why or

why not? What advice did you give them that might help them redesign?

•

What was it like to interview your partner? What was it like to be listened to?•

What was something that was surprising to you about the process of designing the micro:pet?•

Describe a difficult point in the process of designing the micro:pet, and explain how you resolved it.•

Have students write a reflection of about 150–300 words, addressing the following points:

Rubric

Program properly downloaded to micro:bit

For creative projects such as these, we normally don’t use a qualitative rubric to grade the creativity or the

match with their partner’s needs. We just check to make sure that the micro:pet meets the required

specifications:

Project: Micro:pet

 01.Making Page 19

Program properly downloaded to micro:bit•

Micro:bit supported so the face is showing•

Micro:bit can be turned on and off without taking critter apart•

Turned in notes on interview process•

Written reflection (prompt is above)•

Micro:Pet Examples

Dog

micro:pet Fish Tank

 01.Making Page 20

https://youtu.be/2ZCDB-a_uRY

Pink Piggy

Ladybug

 01.Making Page 21

Caterpillar

Fox

 01.Making Page 22

Robot

 01.Making Page 23

2-A-2-1 Solicit and integrate peer feedback as appropriate to develop or refine a program•

2-A-6-10 Use an iterative design process (e.g., define the problem, generate ideas, build,

test, and improve solutions) to solve problems, both independently and collaboratively.

•

CSTA K-12 Computer Science Standards

Standards

 01.Making Page 24

https://www.csteachers.org/?page=CSTA_Standards

This lesson introduces a conceptual framework for thinking of a computing device as something that uses code to

process one or more inputs and send them to an output(s).

Lesson Objectives

Understand the four components that make up a computer and their functions.•

Understand that the micro:bit takes input, and after processing the input, produces output.•

Learn the variety of different types of information the micro:bit takes in as input.•

Apply this knowledge by creating a micro:bit program that takes input and produces an output.•

 …

Introduction

What is a micro:bit?

The micro:bit was created in 2015 in the UK by the BBC to teach computer science to students. The BBC gave away a

micro:bit to every Year 7 student in the UK. You can think of a micro:bit as a mini computer.

http://microbit.org

What is a computer?

There are 4 main components that make up any computer:

Algorithms

 02.Algorithms Page 25

http://microbit.org

The Processor – this is usually a small chip inside the computer, and it’s how the computer processes and

transforms information. Has anyone heard of the term “CPU”? CPU stands for Central Processing Unit. You can

think of the processor as the Brains of the computer - the faster the processor, the more quickly the computer

can think.

1.

RAM (random access memory) - you can think of this as the computer’s short-term memory○

Storage (also referred to as the “hard drive”) - this is the computer’s long-term memory, where it can store

information even when power is turned off

○

The Memory – this is how the computer remembers things. There are two types of memory: 2.

Inputs – this is how a computer takes in information from the world. On humans, our input comes in through

our senses, such as our ears and eyes. What are some Computer Inputs? Keyboard, Mouse, Touchscreen,

Camera, Microphone, Game Controller, Scanner

3.

Outputs – this is how a computer displays or communicates information. On humans, we communicate

information by using our mouths when we talk. What are some examples of communication that don't involve

talking? Blushing, sign language. What are some examples of Computer outputs? Monitor/Screen,

Headphones/Speakers, Printer

4.

Now, let’s look at our micro:bit:

Use the diagram here as a visual aid: http://microbit.org/hardware/•

Can you find the Processor?•

How much memory does the micro:bit have? 16K, which is smaller than many files on your computer!•

Though not pictured, the Light Sensor is located on the LED lights○

Can you locate the following Inputs? Buttons (on board), Pins (at base), Accelerometer / Compass•

Where are the Outputs? LED lights, Pins•

Through the USB port at the top•

By connecting a battery pack to the battery connector

All computers need electricity to power them. There are 3 ways to power your micro:bit:

 02.Algorithms Page 26

http://microbit.org/hardware/

By connecting a battery pack to the battery connector•

Through the 3V Pin at the bottom (not the recommended way to power your micro:bit)•

On the top left corner you may notice that your micro:bit has a Bluetooth antenna. This means your micro:bit can

communicate and send information to other micro:bits. We will learn more about this feature in the Radio Lesson.

 02.Algorithms Page 27

Pencils•

Paper (or index cards)•

Materials

In computer programming, algorithms are sets of instructions.

 ‘ ’ , ,

 ‘ ’

A function machine takes an input, processes the input, and then delivers an output.

The inputs and their outputs are usually recorded in an input output table, where the value of x represents the

input and the value of y represents the output. See example.

Unplugged: What's Your Function & Crazy Conditionals

 02.Algorithms Page 28

input and the value of y represents the output. See example.

Input (x) Output (y)

1 2

2 4

3 6

4 8

A common math problem is to determine what processing is happening to the input that results in the given

output. In the example above, each input is being doubled (multiplied by 2) to produce the corresponding output.

Input (x) Processing => Output (y)

1 * 2 2

2 * 2 4

3 * 2 6

4 * 2 8

Unplugged: What's Your Function?

For this activity, the students can work in pairs, Player A and Player B. The pairs will take turns being the function

machine for their partner who will be providing input to be processed.

Direct the students how you would like them to record their work.

They can use pencil and paper or index cards.

On paper, they can keep track of inputs and outputs in a table (see example above).

With index cards, Player A can write each input on one side of an index card, hand the card to Player B, who then

writes the corresponding output on the other side of the card.

Player B decides on a mathematical function or bit of processing* that will be done on whatever input she

receives from Player A.

•

Player B should write down the function or bit of processing and set it aside, out of sight of Player A.•

Player A then gives Player B a number to process.•

Player B processes the number and returns an output to Player A.•

Player A can then state what function or bit of processing she thinks Player B is using on the input to produce

the given output. One try per round of input/output.

•

If Player A states the correct function, Player B confirms that it is correct by showing the previously hidden

function and the players switch roles and start the game over.

•

If Player A does not guess correctly, Player A provides another input that Player B processes and provides an

output for.

•

The goal is for Player A to figure out what function or bit of processing Player B is using in the fewest number

of rounds of input/output possible.

•

After each student has had at least one chance to be the function machine, play more rounds as time permits.•

To begin:

The difficulty level of the possible functions should be determined by the teacher and shared with the

students ahead of playing. Alternately, the teacher can provide function cards that are handed out at random

to be used by the players, rather than the players creating their own.

•

The player providing the input should not just guess what the function is. She should be able to explain why

Notes:

 02.Algorithms Page 29

The player providing the input should not just guess what the function is. She should be able to explain why

she thinks her input resulted in the given output.

•

Add 8○

Subtract 6○

Multiply by 3○

Divide by 2○

 ‘ ’ •

Multiply by 2 and then subtract 1○

Square the input○

Return 20% of the input○

Examples of more difficult functions:•

Unplugged: Crazy Conditionals

This is a fun, interactive exercise to introduce conditionals and event handlers as computer processing. Read

through the entire activity and adjust as needed for your class and classroom.

Print & cut into strips with one conditional on each strip•

Note that some of the same conditionals can be given to multiple students, while other conditionals are to be

given to just one student.

•

 ‘B GIN’ , RIN ID DOWN •

B ‘B GIN’ ‘ O ’ ,

this is that it is challenging for a student to keep track of a lot of different conditionals, though not so for a

computer! :)

•

Preparation:

Some of the same conditionals can be given to multiple students, while other conditionals are to be given to

just one student.

•

Technically these conditionals are all event handlers because the students are simply waiting for a specific

event to trigger them into action.

•

Unless instructed otherwise, students do not speak or make noise during this activity.•

Notes:

Add AND, OR, AND/OR statements to the conditionals.•

 IF’ •

L IF’ •

Relate this activity to a system and have the students create the conditionals that would end in a product of

some kind or the completion of some task.

•

Extensions/Variations:

These 2 conditionals will be triggered only once. •

These conditionals start and stop this activity.•

G ‘B GIN’ RIN ID •

Give these 2 conditionals to all students.

IF ‘BEGIN’ on the whiteboard,

THEN flip over the conditionals in front of you and follow the directions.

IF ‘STOP’ on the whiteboard,

THEN sit back, cross your arms, and look at the teacher (smile!).

===

 02.Algorithms Page 30

These 6 conditionals may be triggered more than once.•

Walk around the classroom during the activity to trigger some of these conditionals.•

Give these 6 conditionals to multiple students.

IF ‘ ’,

THEN ‘ !’

IF any student stands up for any reason,

THEN clap 3 times.

IF anyone writes on the whiteboard with a GREEN marker,

THEN get up and touch something GREEN in the room and sit back down.

IF anyone walks past you while you are seated,

THEN snap your fingers 3 times.

IF someone snaps their fingers AND ‘ ’ ,

THEN select a book from the bookcase and sit back down.

IF anyone writes anything on the whiteboard,

THEN get up and turn around in place one full turn and sit back down.

===

These 7 conditionals will be triggered only once and set in motion the spelling of STOP on the whiteboard.•

Give one student each of the following 7 conditionals.

IF the teacher picks up a book,

THEN get up and write the letter S on the whiteboard and sit back down.

IF someone writes the letter S on the whiteboard,

THEN go open and close the classroom door and sit back down.

IF someone opens and closes the classroom door,

THEN get up and write the letter T (after the letter S) on the whiteboard.

IF someone writes the letter T on the whiteboard,

THEN get up and turn the lights on and off and sit back down.

IF someone turns on and off the lights,

THEN get up and write the letter O (after the letter T) on the whiteboard.

IF someone writes the letter O on the whiteboard,

THEN get up and sharpen a pencil.

IF someone sharpens a pencil,

THEN get up and write the letter P (after the letter O) on the whiteboard.

 02.Algorithms Page 31

The micro:bit itself is considered hardware. It is a physical piece of technology. In order to

make use of hardware, we need to write software (otherwise known as "code" or computer

programs). The software "tells" the hardware what to do, and in what order to do it using

algorithms. Algorithms are sets of computer instructions.

In this activity, we will discover how to use the micro:bit buttons as input devices, and write code

that will make something happen on the screen as output. We will also learn about pseudocode,

the MakeCode tool, event handlers, and commenting code.

Pseudocode

What do you want your program to do?

The first step in writing a computer program is to create a plan for what you want your program

to do. Write out a detailed step-by-step plan for your program. Your plan should include what

type of information your program will receive, how this input will be processed, what output

your program will create and how the output will be recorded or presented. Your writing does

not need to be written in complete sentences, nor include actual code. This kind of detailed

writing is known as pseudocode. Pseudocode is like a detailed outline or rough draft of your

program. Pseudocode is a mix of natural language and code.

Start with a blank screen•

Whenever the user presses button A, display a happy face.•

Whenever the user presses button B, display a sad face.•

For the program we will write, the pseudocode might look like this:

Microsoft MakeCode

Now that you have a plan for your program, in the form of pseudocode, let's start creating the

real program. In a browser window, open the Microsoft MakeCode for micro:bit tool

(https://makecode.microbit.org). The MakeCode tool is called an IDE (Integrated Development

Environment), and is a software application that contains everything a programmer needs to

create, compile, run, test, and even debug a program.

Simulator - on the left side of the screen, you will see a virtual micro:bit that will show what

your program will look like running on a micro:bit. This is helpful for debugging, and

instant feedback on program execution.

•

Toolbox - in the middle of the screen, there are a number of different categories, each

containing a number of blocks that can be dragged into the programming workspace on

the right.

•

Workspace - on the right side of the screen is the Programming Workspace where you will

create your program. Programs are constructed by snapping blocks together in this area.

•

Tour of Microsoft MakeCode

Activity: Happy Face, Sad Face

 02.Algorithms Page 32

https://makecode.microbit.org

Event handlers

W , , ‘ ’ ‘ ’

coding workspace. These two blocks are event handlers.

In programming, an event is an action done by the user, such as pressing a key or clicking a

mouse button. An event handler is a routine that responds to an event. A programmer can

write code telling the computer what to do when an event occurs.

One fun unplugged activity you can do with kids to reinforce the idea of an action that waits for

an event is the Crazy Conditionals activity.

Tooltips - Hover over any block until a hand icon appears and a small text box will pop up

 Y ‘ ’ ‘ ’

blocks. Notice that it also shows you the equivalent code in JavaScript.

•

Hovering over the code in JavaScript has the same effect.

Notes:

Help/Documentation - You can also right-click on any block and select Help to open the

reference documentation.

•

 02.Algorithms Page 33

reference documentation.

Deleting blocks - Click on the 'forever' block and drag it left to the Toolbox area. You

should see a garbage can icon appear. Let go of the block and it should disappear. You

can drag any block back to the Toolbox area to delete it from the coding workspace. You

can also remove a block from your coding window by selecting the block and then

pressing the "delete" key on your keyboard (or command-X on a mac).

•

Looking at our pseudocode, we want to make sure to start a program with a clear screen.

We can do this by going to the Basic menu -> ‘ ’ •

D ‘ ’ W •

N ‘ ’ I ‘ ’ ,

box will appear letting you know that since this block is not attached to an event handler

block, it will not run.

G ‘ ’ ‘ ’ N

longer grayed out, indicating that it will run when the event, the program starts, occurs.

•

basic.clearScreen()

Save early, save often!

We now have a working program running on the micro:bit simulator!

As you write your program, MakeCode will automatically compile and run your code on the

 ’ , ,

we should name our program and save it.

 02.Algorithms Page 34

On the bottom left of the application window, to the right of the Download button, is a text box

in which you can name your program. After naming your program, press the save button to save

it.

Important: Whenever you write a significant piece of code or just every few minutes, you should

save your code. Giving your code a meaningful name will help you find it faster from a list of

programs and will let others know what your program does.

More event handlers

F I , ‘ ’ •

Notice that the second block is grayed out. This is because, right now, they are the same

 , ‘ ’ ‘ ’

Leave the first block alone for now, and using the drop-down menu within the second

 , ‘ ’ ‘B’ N ,

 , ‘ B ’

•

Now to make our program a bit more interesting by adding two more event handlers.

input.onButtonPressed(Button.A, () => {
})
input.onButtonPressed(Button.B, () => {
})

Show LEDs

F B , ‘ ’ •

 ‘ ’ ‘ ’

‘ ’ ‘ B ’

•

Now we can use our LED lights to display different images depending on what button the user

presses.

input.onButtonPressed(Button.A, () => {
 basic.showLeds(`

 02.Algorithms Page 35

 `)
})
input.onButtonPressed(Button.B, () => {
 basic.showLeds(`

 `)
})

 ‘ ’ ‘

 ’

•

 ‘ ’ ‘ B

 ’

•

input.onButtonPressed(Button.A, () => {
 basic.showLeds(`

 . # . # .

 # . . . #
 . # # # .
 `)
})
input.onButtonPressed(Button.B, () => {
 basic.showLeds(`

 . # . # .

 . # # # .
 # . . . #
 `)
})

Test your program!

F L D ‘ ’

the images you want.

•

Remember to save your code. •

Remember, MakeCode automatically compiles and runs your program, so all you need to do

now is press button A and then button B in the simulator to see the output produced by your

code.

 02.Algorithms Page 36

Commenting your code

It is good practice to add comments to your code. Comments can be useful in a number of

ways. Comments can help you remember what a certain block of code does and/or why you

chose to program something the way you did. Comments also help others reading your code to

understand these same things.

Right-click on the icon that appears before the words on a block.•

 ‘ ’ •

This will cause a question mark icon to appear to the left of the previous icon.•

Click on the question mark and a small yellow box will appear into which you can write

your comment.

•

Click on the question mark icon again to close the comment box when you are done.•

Click on the question mark icon whenever you want to see your comment again or to edit

it.

•

To comment a block of code:

When you right-click on the icon that appears before the words on a block, notice that

there are other options available to you that allow you to duplicate and delete blocks, as

well as get help. Feel free to explore and use these as you code.

•

Notes

 02.Algorithms Page 37

well as get help. Feel free to explore and use these as you code.

In JavaScript, you can add a comment by using two forward slashes, then typing your

comment. The two forward slashes tell JavaScript that the following text (on that same line)

is a comment.

•

// Display a happy face when button A is pressed.

Cleaning up!

It means that only the code and blocks that you are using in your program are still in the

workspace.

•

Remove (delete) any other blocks that you may have dragged into the coding workspace

as you were experimenting and building your program.

•

Clean up your coding workspace before you do a final save! What does this mean?

Save and Download

Now that your code is running just fine in the simulator, is commented, and your coding window

 ‘ ’, , , !

Here is the complete program:

// Display a happy face when button A is pressed.
input.onButtonPressed(Button.A, () => {
 basic.showLeds(`

 . # . # .

 # . . . #
 . # # # .
 `)
})
// Display a sad face when button B is pressed.
input.onButtonPressed(Button.B, () => {
 basic.showLeds(`

 . # . # .

 . # # # .
 # . . . #
 `)
})
basic.clearScreen()

HappySadFace

 02.Algorithms Page 38

https://makecode.microbit.org/_52r8737R8d88

 02.Algorithms Page 39

A fidget cube is a little cube with something different that you can manipulate on each surface.

 , , , “ ” ,

pull, press, and play with it. In this project, students are challenged to turn the micro:bit into

 “ ”

Original Kickstarter Fidget Cube - https://www.kickstarter.com/projects/antsylabs/fidget-

cube-a-vinyl-desk-toy (there is a funny video showing the fidget cube in action).

•

Show students some examples of fidget cubes:

Do any of your students fidget? •

What kinds of things do they fidget with? Spinning pens, fidget spinners, rings, coins? •

There are many different versions of fidget cubes available now. Do any students have

any?

•

Have they seen them before? •

What are the types of fidget activities? •

If students could add or modify features of the fidget cube, what would they choose to

do?

•

What would make the ultimate fidget cube?•

Discussion questions

Remind students that a computing device has a number of inputs, and a number of outputs. The

code that we write processes input by telling the micro:bit what to do when various events

occur.

Project

on button A pressed•

on button B pressed•

on button A+B pressed•

on shake•

Make a fidget cube out of the micro:bit, create a unique output for each of the following inputs:

See if you can combine a maker element similar to what you created in Lesson 1 by providing a

holder for the micro:bit that holds it securely when you press one of the buttons.

Project: Fidget Cube

 02.Algorithms Page 40

https://www.kickstarter.com/projects/antsylabs/fidget-cube-a-vinyl-desk-toy
https://www.kickstarter.com/projects/antsylabs/fidget-cube-a-vinyl-desk-toy

Sample Fidget Cube designs

Add more inputs and more outputs - use more than 4 different types of input. Try to use

other types of output (other than LEDs) such as sound!

•

Project Mod

Assessment

4 3 2 1

Inputs At least 4 different

inputs are

successfully

implemented

At least 3

different inputs

are successfully

implemented

At least 2

different inputs

are successfully

implemented

Fewer than 2

different inputs are

successfully

implemented

Outputs At least 4 different

outputs are

successfully

implemented

At least 3

different outputs

are successfully

implemented

At least 2

different outputs

are successfully

implemented

Fewer than 2

different outputs

are successfully

implemented

Micro:bit

program

Micro:bit program:

uses event

handlers in a way

that is integral to

the program

•

compiles and runs

as intended,

•

includes

meaningful

comments

•

Micro:bit program

lacks 1 of the

required elements

Micro:bit program

lacks 2 of the

required elements

Micro:bit program

lacks all or of the

required elements

Collaboration

reflection

Reflection piece

includes:

brainstorming

ideas

•

Reflection piece

lacks 1 of the

required elements

Reflection piece

lacks 2 of the

required elements

Reflection piece

lacks 3 of the

required elements

 02.Algorithms Page 41

ideas

construction•

programming•

beta testing•

 02.Algorithms Page 42

CSTA K-12 Computer Science Standards

CT.L2-03 Define an algorithm as a sequence of instructions that can be processed by a

computer.

•

CD.L2-01 Recognize that computers are devices that execute programs. •

CD.L2-02 Identify a variety of electronic devices that contain computational processors. •

CD.L2-03 Demonstrate an understanding of the relationship between hardware and

software.

•

CD.L3A-04 Compare various forms of input and output. •

Standards

 02.Algorithms Page 43

https://www.csteachers.org/?page=CSTA_Standards

This lesson introduces the use of variables to store data or the results of mathematical

operations. Students will practice giving variables unique and meaningful names. And we will

introduce the basic mathematical operations for adding subtracting, multiplying, and dividing

variables.

Lesson Objectives

Understand what variables are and why and when to use them in a program.•

Learn how to create a variable, set the variable to an initial value, and change the value of

the variable within a micro:bit program.

•

Learn how to create meaningful and understandable variable names.•

Understand that a variable holds one value at a time.•

Understand that when you update or change the value held by a variable, the new value

replaces the previous value.

•

Learn how to use the basic mathematical blocks for adding, subtracting, multiplying, and

dividing variables.

•

Apply the above knowledge and skills to create a unique program that uses variables as

an integral part of the program.

•

 …

Introduction: Variables in daily life•

Unplugged Activity: Rock Paper Scissors scorekeeping activity•

Micro:bit Activity: Make a game scorekeeper•

Project: Make a scorekeeper•

Project Mods•

Assessment: Rubric •

Standards: Listed•

Lesson Plan Structure

Introduction

Computer programs process information. Some of the information that is input, stored, and

used in a computer program has a value that is constant, meaning it does not change

throughout the course of the program. An example of a constant ‘ ’ ‘ ’

has one value that never changes. Other pieces of information have values that vary or change

during the running of a program. Programmers create variables to hold the value of

information that may change. In a game program, a variable may be created to hold the

 ’ , !

game.

Ask the students to think of some pieces of information in their daily life that are constants and

Variables

 03.Variables Page 44

W ’

day (constants)?

•

What pieces of information have values that do change during the course of a single day

(variables)

•

Ask the students to think of some pieces of information in their daily life that are constants and

others that are variables.

Constants and variables can be numbers and/or text.

Examples

 , , ’ , ’ •

Variables: The temperature/weather, the current time, the current class, whether they are

 …

•

I …

A number variable could hold numerical data such as the year, the temperature, or the

degree of acceleration.

•

A string variable holds a string of alphanumeric characters such as a person's name, a

password, or the day of the week.

•

A boolean variable has only two values: true or false. You might have certain things that

happen only when the variable called gameOver is false, for example.

•

A sprite is a special variable that represents a single dot on the screen and holds two

separate values for the row and column the dot is currently in.

•

Variables hold a specific type of information. The micro:bit's variables can keep track of

numbers, strings, booleans, and sprites. The first time you use a variable, its type is assigned to

match whatever it is holding. From that point forward, you can only change the value of that

variable to another value of that same type.

 03.Variables Page 45

To experience creating and working with variables, have students pair up and play Rock Paper

Scissors.

Ask students to keep track of their scores on paper.

You can also have students play in groups of three with the third student acting as the

scorekeeper.

Students will keep track of how many times each player wins as well as the number of times the

players tie.

Play: Have students play Rock Paper Scissors for about a minute. When done, ask the students

 ‘ ’

Play again: Tell students they will now start over and play again for another minute. When

 , ‘ ’

Ask some students to share how they kept track of player scores.

 , ’

 , ‘ ’

made a separate place for recording ties.

Unplugged: Keeping Score

 03.Variables Page 46

Sample Score-keeping sheet

Ask the students what parts of the score sheet represent constants, values that do not change

 ’

Ask the students what parts of the score sheet represent variables, values that do change

 ’

 03.Variables Page 47

This Micro:bit activity guides the students to create a program with three variables that will keep score for their Rock

Paper Scissors game.

The number of times the first player wins•

The number of times the second player wins•

the number of times the players tie•

Tell the students that they will be creating a program that will act as a scorekeeper for their next Rock Paper Scissors

game. They will need to create variables for the parts of scorekeeping that change over the course of a gaming

session. What are those variables?

What would be a unique and clear name for the variable that will keep track of the number of times Player A

wins?

•

 ‘ W’, ’, ‘ B ’, ‘ B ’, ‘ W ’ •

Discuss why (or why not) different suggestions make clear what value the variable will hold. In general, variable

names should clearly describe what type of information they hold.

•

Creating and naming variables: Lead the students to create meaningful names for their variables.

In MakeCode, from the Variables menu, make and name these three variables: PlayerAWins, PlayerBWins, PlayersTie

Initializing the variable value

It is important to give your variables an initial value. The initial value is the value the variable will hold each time the

program starts. For our counter program, we will give each variable the value 0 (zero) at the start of the program.

Activity: Scorekeeper

 03.Variables Page 48

let PlayerAWins = 0
let PlayerBWins = 0
let PlayersTie = 0

Updating the variable value

In our program, we want to keep track of the number of times each player wins and the number of times they tie. We

can use the buttons A and B to do this.

Press button A to record a win for player A•

Press button B to record a win for player B•

Press both button A and button B together to record a tie•

Pseudocode:

Each time the scorekeeper presses button A to record a win for Player A, we want to add 1 to the current value of

 ‘ W ’

•

Each time the scorekeeper presses button B, to record a win for Player B, we want to add 1 to the current value

 ‘ BW ’

•

Each time the scorekeeper presses both button A and button B at the same time to record a tie, we want to add

1 to the current value of the variable PlayersTie

•

We already initialized these variables and now need to code to update the values at each round of the game.

F I , ‘ ’

L ‘ ’ - ‘B’ ‘ +B’

third block.

F V , ‘ ’

Place one change block into each of the Button Pressed blocks.

Choose the appropriate variable from the pull down menus in the change blocks.

 03.Variables Page 49

input.onButtonPressed(Button.A, () => {
 PlayerAWins += 1
})
input.onButtonPressed(Button.B, () => {
 PlayerBWins += 1
})
input.onButtonPressed(Button.AB, () => {
 PlayersTie += 1
})

User feedback

 ‘ ’ , •

 ‘B’ ‘B’ B,•

 ‘ ’ B •

Whenever the scorekeeper presses button A, button B, or both buttons together, we will give the user visual feedback

acknowledging that the user pressed a button. We can do this by coding our program to display:

W ‘ ’, ‘B’, ‘ ’ ‘ ’ ‘ ’

I , ‘ ’

 03.Variables Page 50

input.onButtonPressed(Button.A, () => {
 PlayerAWins += 1
 basic.showLeds(`
 . # # # .
 . # . # .
 . # # # .
 . # . # .
 . # . # .
 `)
 basic.clearScreen()
})
input.onButtonPressed(Button.B, () => {
 PlayerBWins += 1
 basic.showLeds(`
 . # # . .
 . # . # .
 . # # # .
 . # . # .
 . # # . .
 `)
 basic.clearScreen()
})
input.onButtonPressed(Button.AB, () => {
 PlayersTie += 1
 basic.showLeds(`
 . # # # .
 . . # . .
 . . # . .
 . . # . .
 . . # . .
 `)
 basic.clearScreen()
})

 03.Variables Page 51

N ‘ ’ ‘ ’, ‘B’, ‘ ’

What do you think would happen if we did not clear the screen? Try it.

Showing the final values of the variables

To finish our program, we can add code that tells the Micro:bit to display the final values of our variables.

 B, ‘ ’

W ‘ ’, ‘ ’, ‘ ’, ‘ ’

Here is the complete program.

let PlayersTie = 0
let PlayerBWins = 0
let PlayerAWins = 0
input.onButtonPressed(Button.A, () => {
 PlayerAWins += 1
 basic.showLeds(`
 . # # # .
 . # . # .
 . # # # .
 . # . # .
 . # . # .
 `)
 basic.clearScreen()
})
input.onButtonPressed(Button.B, () => {
 PlayerBWins += 1
 basic.showLeds(`
 . # # . .
 . # . # .

 03.Variables Page 52

 . # . # .
 . # # # .
 . # . # .
 . # # . .
 `)
 basic.clearScreen()
})
input.onButtonPressed(Button.AB, () => {
 PlayersTie += 1
 basic.showLeds(`
 . # # # .
 . . # . .
 . . # . .
 . . # . .
 . . # . .
 `)
 basic.clearScreen()
})
input.onGesture(Gesture.Shake, () => {
 basic.showString("Wins:")
 basic.showLeds(`
 . # # # .
 . # . # .
 . # # # .
 . # . # .
 . # . # .
 `)
 basic.showNumber(PlayerAWins)
 basic.pause(1000)
 basic.showLeds(`
 . # # . .
 . # . # .
 . # # # .
 . # . # .
 . # # . .
 `)
 basic.showNumber(PlayerBWins)
 basic.pause(1000)
 basic.showString("Ties:")
 basic.showNumber(PlayersTie)
 basic.pause(1000)
 basic.clearScreen()
})
PlayerAWins = 0
PlayerBWins = 0
PlayersTie = 0

Scorekeeper

 03.Variables Page 53

https://makecode.microbit.org/47893-98679-98470-56344

Try it out!

Download the Scorekeeper program to the micro:bit, and have the students play one last round of Rock Paper Scissors

using their micro:bits to act as the Scorekeeper!

‘Adding’ on with mathematical operations

There is more we can do with the input we received using this program. We can use mathematical operations on our

variables.

 ’ , ‘ ’

this, we can add the values stored in the variables we created to keep track of how many times each player won and

how many times they tied.

First, display a string to show the player that the following sum represents the total number of rounds played. •

Our program will add the values stored in the variables 'PlayerAWins', 'PlayerBWins', and 'PlayersTie' and then

display the sum of this mathematical operation.

•

The blocks for the mathematical operations adding, subtracting, multiplying, and dividing are listed in the Math

section of the Toolbox.

•

Note: Even though there are 4 blocks shown for these 4 operations, you can access any of the four operations

from any of the four blocks, and you can also access the exponent operation from these blocks.

In order to do this, we can add the code to our program under the 'on shake' event handler .

 03.Variables Page 54

Replace the default values of zero with the names of the variables we want to add together.•

Notice that because we are adding three variables together we need a second math block. First we add the

values for 'PlayerAWins' and 'PlayerBWins', then add 'PlayersTie'.

input.onGesture(Gesture.Shake, () => {
 basic.showString("Total rounds played:")
 basic.showNumber(PlayerAWins + PlayerBWins + PlayersTie)

Save, download, and try the program again to make sure that it runs correctly and displays the correct numbers

for each variable.

•

Remember that the micro:bit is a device that processes input and displays it as output in some way. By storing values

in variables, you can perform mathematical operations on that data that provides you with useful information.

What other math operations could provide valuable information from the values stored in these variables?

 ’

Examples:

 03.Variables Page 55

 ’ •

Calculate a display the number of tied games as a percentage of all rounds played.•

 03.Variables Page 56

This is an assignment for students to come up with a Micro:bit program that counts something.

Their program should keep track of input by storing values in variables, and provide output in some visual and useful way.

Students should also perform mathematical operations on the variables to give useful output.

Input

Remind the students of all the different inputs available to them through the Micro:bit.

Project Ideas

Duct tape wallet

You can find instructions on the web for creating a durable, fashionable wallet or purse out of duct tape

(https://pxt.microbit.org/projects/wallet). Create a place for the micro:bit to fit securely. Use Button A to add dollars to the wallet, and Button

B to subtract dollars from the wallet.

Extra Mod: Use other inputs to handle cents, and provide a way to display how much money is in the wallet in dollars and cents.

 ’

In baseball during an at-bat, umpires must keep track of how many pitches have been thrown to each batter. Use Button A to record the

number of balls (up to 4) and the number of strikes (up to 3).

Extra Mod: Create a way to reset both variables to zero, create a way to see the number of balls and strikes on the screen at the same time.

Shake counter

Using the 'On Shake' block, you can detect when the micro:bit has been shaken and increment a variable accordingly. Try attaching the

micro:bit to a lacrosse stick and keep track of how many times you have successfully thrown the ball up in the air and caught it.

Extra Mod: Make the micro:bit create a sound of increasing pitch every time you successfully catch the ball.

Pedometer

See if you can count your steps while running or doing other physical activities carrying the micro:bit. Where is it best mounted?

 D ’

Calculator

Create an adding machine. Use Button A to increment the first number, and Button B to increment the second number. Then, use Shake or

Buttons A + B to add the two numbers and display their sum.

Extra Mod: Find a way to select and perform other math operations.

Project: Everything Counts

 03.Variables Page 57

https://pxt.microbit.org/projects/wallet

Homemade Top with Micro:bit Revolution Counter

Duct Tape Wallet with Micro:bit Display

Baseball Pitch Counter

Process

In any design project, it's important to start by understanding the problem. You can begin this activity by interviewing people around you

who might have encountered the problem you are trying to solve. For example, if you are designing a wallet, ask your friends how they store

 03.Variables Page 58

who might have encountered the problem you are trying to solve. For example, if you are designing a wallet, ask your friends how they store

their money, credit cards, identification, etc. What are some challenges with their current system? What do they like about it? What else do

they use their wallets for?

If you are designing something else, think about how you might find out more information about your problem through interviewing or

observing people using current solutions.

Then start brainstorming. Sketch out a variety of different ideas. Remember that it's okay if the ideas seem far-out or impractical. Some of the

best products come out of seemingly crazy ideas that can ultimately be worked into the design of something useful. What kind of holder can

you design to hold the Micro:bit securely? How will it be used in the real world, as part of a physical design?

Use the simulator to do your programming, and test out a number of different ideas. What is the easiest way to keep track of data? If you are

designing for the accelerometer, try to see what different values are generated through different actions (you can display the value the

accelerometer is currently reading using the 'Show Number' block; clear the screen afterward so you can see the reading).

basic.forever(() => {
 basic.showNumber(input.acceleration(Dimension.X))
 basic.showLeds(`

 `)
})

Reflection

What was the problem you were trying to solve with this project?•

What were the Variables that you used to keep track of information?•

What mathematical operations did you perform on your variables? What information did you provide?•

Describe what the physical component of your Micro:bit project was (e.g., an armband, a wallet, a holder, etc.)•

How well did your prototype work? What were you happy with? What would you change?•

What was something that was surprising to you about the process of creating this project?•

Describe a difficult point in the process of designing this project, and explain how you resolved it.•

Have students write a reflection of about 150–300 words, addressing the following points:

Assessment

4 3 2 1

Variables At least 3 different variables

are implemented in a

meaningful way

At least 2 variables are

implemented in a meaningful

way

At least 1 variable is

implemented in a meaningful

way

No variables are

implemented.

Variable names All variable names are

unique and clearly describe

what information values the

variables hold.

The majority of variable names

are unique and clearly describe

what information values the

variables hold.

A minority of variable names

are unique and clearly describe

what information values the

variables hold.

None of the variable

names clearly describe

what information values

the variables hold.

Mathematical

operations

Uses a mathematical

operation on at least two

variables in a way that is

integral to the program

Uses a mathematical operation

on at least one variable in a

way that is integral to the

program

Uses a mathematical operation

incorrectly or not in a way that

is integral to the program

No mathematical

operations are used.

Micro:bit Micro:bit program: Micro:bit program lacks 1 of Micro:bit program lacks 2 of Micro:bit program lacks 3

 03.Variables Page 59

Micro:bit

program

Micro:bit program:

Uses variables in a way that

is integral to the program,

•

Uses mathematical

operations to add, subtract,

multiply, and/or divide

variables,

•

Compiles and runs as

intended,

•

Meaningful comments in

code

•

Micro:bit program lacks 1 of

the required elements

Micro:bit program lacks 2 of

the required elements

Micro:bit program lacks 3

or more of the required

elements

Collaboration

reflection

Reflection piece addresses

all prompts.

Reflection piece lacks 1 of the

required elements.

Reflection piece lacks 2 of the

required elements.

Reflection piece

lacks 3 of the required

elements.

 03.Variables Page 60

CSTA K-12 Computer Science Standards

CL.L2-03 Collaborate with peers, experts, and others using collaborative practices such as

pair programming, working in project teams, and participating in group active learning

activities

•

CT.L1:6-01 Understand and use the basic steps in algorithmic problem-solving•

CT.L1:6-02 Develop a simple understanding of an algorithm using computer-free exercises•

CPP.L1:6-05 Construct a program as a set of step-by-step instructions to be acted out•

2-A-5-7 Create variables that represent different types of data and manipulate their values.•

Standards

 03.Variables Page 61

https://www.csteachers.org/?page=CSTA_Standards

This lesson introduces the Logic blocks such as 'If...then' and 'If...then...else'.

Students practice skills of creativity, problem-solving, and collaboration.

Lesson Objectives

Understand what conditional statements are, and why and when to use them in a program.•

L L 'I ' 'I … '.•

Practice using the Logic blocks so different conditions yield specified outcomes.•

Demonstrate understanding and apply skill by collaborating with classmates to create a

game that uses a micro:bit and a program that correctly and effectively uses conditionals.

•

 …

Introduction: Conditionals in daily life•

Unplugged Activity: Red if, Green then•

Micro:bit Activity: Rock Paper Scissors•

Project: Board Game•

Assessment: Rubric for board game project•

Standards: Listed•

Lesson Plan Structure

Introduction

Computer programs are instructions telling the computer how to process input and deliver

output.

An important part of programming is telling the computer WHEN to perform a certain task.

F , ‘ ’ Conditionals get their name because a certain

Condition or Rule has to be met.

Students are all already familiar with the concept of conditionals in their daily lives!

“I , ”•

“I , ”•

“I , , ”•

Have they ever had their parents say..?

IF (condition is met), THEN (action performed)

These are all conditionals! Conditionals follow the format of IF this, THEN that.

Have the students share a few conditionals from their own lives with the class or within small

groups.

IF (condition is met), THEN (action performed), ELSE (different action performed)

Note: For older students, you can have them add the ELSE portion of a conditional.

IF it is snowing, THEN wear boots, ELSE wear shoes.•

Example:

The ELSE portion makes sure that a different action is performed in either case. Without the ELSE

Conditional Statements

 04.Conditionals Page 62

The ELSE portion makes sure that a different action is performed in either case. Without the ELSE

action, your students might be barefoot!

Tell the students that they will be acting out some conditionals as though the whole class is a

computer program for a game. Each student will perform a described action if the indicated

condition is met.

Note: This activity can be done as a whole class or in smaller groups or as a pencil and paper

activity.

 04.Conditionals Page 63

Objective

To reinforce the programming of basic conditionals by having students experience conditionals

through acting them out in real life.

Activity Overview

Students will line up at one end of the classroom with the goal of reaching the other side of the

classroom. The teacher, and then the students themselves will call out conditionals and all the

students will advance or not depending on the specific conditional statement.

N ‘ ’

running of the program.

Pencils and lined paper (if doing this activity seated). Students can advance across the

paper instead of the room with one inch line equal to one step.

•

Materials

Have the students line up at one side of the room.•

The object of the game is to get across the room first.○

F 'I ' I ‘ ’ ,

 ‘ ’ I ‘ ’ ,

nothing.

○

F 'I ' , , ‘ ’

may apply to you.

○

Explain the rules:•

Process

If you are wearing something green, then take a step forward.•

I ‘ ’ , •

If you are wearing sneakers, then take a step forward, else take 2 steps forward.•

If your birthday is this month, then take a giant hop forward.•

Example conditional statements

The conditionals you use will depend on your individual class.

After the students get the idea of the game, allow them to make up and call out conditionals

(that meet teacher approval).

They will need to be observant, as a conditional that moves them forward, will also move their

competition forward!

Unplugged: Red Light Green Light

 04.Conditionals Page 64

competition forward!

SAFETY FIRST! Students, especially younger ones, can get quite silly with this and while it is

meant to be fun and even funny, safety first!

•

Student conditionals need to apply to at least two people in the class.•

Tips

Reflections

H ? W ‘ - ’? D

or fail to correctly carry out the THEN or ELSE action? Were there some conditions that could be

evaluated as something other than True or False (maybe, sometimes)?

Add AND, OR, AND/OR statements to the conditionals.•

 I ND , …

 IF’ •

 I , … ,

steps forward.

Let students create their own conditionals for future program runs with the class. (A very

popular activity, though all conditionals should be run by the teacher first for approval.)

•

Relate this activity to a system and have the students create the conditionals that would

end in a product of some kind or the completion of some task, like writing a sentence or

setting a table or constructing a simple structure.

•

Extensions/Variations

 04.Conditionals Page 65

For this activity, each student will need a micro:bit.

Everyone will create the same program, the classic rock paper scissor game.

Have students recall the classic rock paper scissors game.•

What are the rules of the game? What are the conditionals?•

If Player A gets rock, and Player B gets scissors, Then Player A wins.

Example:•

Have students write the pseudocode for how to play the game on the micro:bit.•

On button A press: choose random number from 0-2

If random number = 0, then display rock icon,

Else if random number = 1, then display paper icon,

Else display scissors icon.

Example pseudocode:

 , ’

check to see if random number = 2. So we just use an else.

•

Introduce activity

Working from the specifications, have students work in pairs to try to code a Rock Paper

Scissors game on their own.

•

If students get stuck, there is a tutorial at https://pxt.microbit.org/projects/rock-paper-

scissors (steps 1 through 4), that leads students step-by-step through the process of

coding a working rock paper scissor game for their micro:bit.

•

Let them play the game against their program.•

Micro:bit

Add a way to keep score: Steps 5 through 7 in the tutorial○

 ‘R

 L z ’, 8

○

Ideas for Mods

rock-paper-scissors

Activity: Rock Paper Scissors

 04.Conditionals Page 66

https://pxt.microbit.org/projects/rock-paper-scissors
https://pxt.microbit.org/projects/rock-paper-scissors
https://makecode.microbit.org/_A6Xbepc3w4uu

 04.Conditionals Page 67

This is an assignment for students to create a board game. It should take two to three class periods. If your school has a makerspace or an

art classroom where students can access materials such as cardboard, poster paints, or markers, you might schedule your classes to work

there.

O , ’ I , give them some

time to give and gather feedback, then revise their games accordingly.

Introduction

Many board games use an electronic toy to signal moves, or provide clues. There are some funny examples online if you search for

“ ” H

Dark Tower (featuring Orson Welles): This is an example of a circular board game in which the pieces start on the edges and move in toward

the middle.

Electronic Dream Phone Board Game Commercial - 1992: This board game is really a logic puzzle. There are printed clues that illustrate

relationships and the phone provides clues that help you to narrow down possibilities by a process of elimination.

Stop Thief Electronic Board Game commercial 1979: This board game uses a device to give audio clues that help you to figure out what to

 I ’

Assignment

Students should work in pairs to create an original board game project in which micro:bit is a central feature, and the rules of their board

game should use Conditionals.

A set of written rules (how to play)•

A game board•

A program for the micro:bit•

Photo documentation of the different game pieces, cards, or other components of the game with the micro:bit included as well as a

screenshot of your micro:bit code. Each photo must have a caption that describes what the photo is documenting.

•

R ’ ’

brainstorming ideas, through construction, programming, and beta testing.

•

Students will need to work together to come up with:

The micro:bit needs to work in conjunction with the game board and/or game pieces and should be a central feature of the game. Ideally, it

should be more than a simple substitute for a six-sided die.

Simulate the results of a battle between two pieces•

Randomly point in a different direction of travel•

Generate a result based on its current incline•

Point randomly at players and kill them•

Display a dynamic score•

... let your imaginations run wild!•

The Micro:bit might:

Ideally, students should be writing their own versions of Micro:bit programs to do something original.

Here is one simple program to discuss and use as an example:

Battle Game Pieces

Press A to enter the strength of piece A. •

Then press B to enter the strength of piece B. •

Shake the Micro:bit to determine the winner of the battle, which is proportionately random to the strength of each piece.•

In this example, pieces start out at full strength and lose points based on random events on the board. When two pieces meet on the same

space, they battle.

Project: Board Game

 04.Conditionals Page 68

https://www.youtube.com/watch?v=cxrY7MWEkwE
https://www.youtube.com/watch?v=pqYsQgDqlmg
https://www.youtube.com/watch?v=q3wpPRdDy4E

let p2 = 0
let p1 = 0
input.onButtonPressed(Button.A, () => {
 p1 += 1
 basic.showNumber(p1)
})
input.onButtonPressed(Button.B, () => {
 p2 += 1
 basic.showNumber(p2)
})
input.onGesture(Gesture.Shake, () => {
 if (Math.random(p1 + p2 - 1 + 1) + 1 <= p1) {
 basic.showString("A")
 } else {
 basic.showString("B")
 }
})

BattleGame

 04.Conditionals Page 69

https://makecode.microbit.org/12149-80948-84778-40832

Beta Testing

Have each pair of students set up their own project at their table. •

Leave a clipboard or a laptop on the table for taking notes.•

Play the game (5 min)○

Fill out a survey form (5 min)○

Rotate the students through each project, moving clockwise around the room:•

G ’

How easy was it to figure out what to do?•

What is something about this project that works really well?•

What is something that would make this project even better?•

Any other comments or suggestions?•

Sample Survey questions

Many online survey tools will allow you to sort the comments by project and share them with project creators so they can make

improvements based on that feedback.

Reflection

Explain how you decided, as a pair, on your particular board game idea.•

What was something that was surprising to you about the process of creating this game?•

Describe a difficult point in the process of designing this game, and explain how you resolved it.•

What feedback did your beta testers give you? How did that help you improve your game? What were the Conditionals that you used

as part of your game rules?

•

Have students write a reflection of about 150–300 words, addressing the following points:

Board Game Example

How to win: Starting from Earth, your goal is to progress to Mars. The first person to reach Mars is the winner.•

Shake the microbit to randomize how far you get to advance○

If you land on a pink square, press “B” on the Micro:bit until your previous roll number appears. Then press A and B at the same

time to see whether or not you move based upon the number on the square

○

Up to four players○

Rules:•

Space Race by K. and S.

 04.Conditionals Page 70

Finished Game

Micro:bit Holder

 04.Conditionals Page 71

Game Pieces

let yes_or_no = 0
let current_roll = 0
let previous_roll = 0
input.onButtonPressed(Button.AB, () => {
 previous_roll = 0
 if (4 <= previous_roll) {
 yes_or_no = Math.random(8)
 }
 if (4 > previous_roll) {

 04.Conditionals Page 72

 if (4 > previous_roll) {
 yes_or_no = Math.random(5)
 }
 if (2 < yes_or_no) {
 basic.showString("YES")
 basic.clearScreen()
 } else {
 basic.showString("NO")
 basic.clearScreen()
 }
})
input.onGesture(Gesture.Shake, () => {
 current_roll = Math.random(6)
 basic.showNumber(current_roll + 1)
 basic.pause(5000)
 basic.clearScreen()
})
input.onButtonPressed(Button.B, () => {
 previous_roll += 1
 basic.showNumber(previous_roll)
})
input.onButtonPressed(Button.A, () => {
 previous_roll += -1
 basic.showNumber(previous_roll)
})
basic.showString("SPACE RACE")
previous_roll = 0

SpaceRace

Assessment

4 3 2 1

Rules All game rules are clear and

complete

A game rule is missing or

not complete or not clear

More than one game rule

is missing or not complete

or not clear

Most of the game rules are

missing or it is not clear

what the rules are.

Game board Game board is: Game board meets only 3 Game board meets only 2 Game board meets only 1

 04.Conditionals Page 73

https://makecode.microbit.org/65306-07188-65044-14657

Game board Game board is:

Complete•

Neat•

Fits with the theme of the game•

Micro:bit is a central part of the

game

•

Game board meets only 3

of the conditions listed for

a score of 4.

Game board meets only 2

of the conditions listed for

a score of 4.

Game board meets only 1

of the conditions listed for a

score of 4.

Micro:bit

program

Micro:bit program:

Uses the Micro:bit in a way that is

integral to the game

•

Uses conditionals correctly•

Compiles and runs as intended•

JavaScript includes comments in

code

•

Micro:bit program lacks 1

of the required elements

Micro:bit program lacks 2

of the required elements

Micro:bit program lacks 3 of

the required elements

Photo

documentation

Complete photo documentation

that includes photos of game

board and code and captions.

A photo is missing or of

poor quality or a caption is

missing.

Multiple photos and/or

captions missing or of

poor quality.

Most photos and/or

captions missing or of poor

quality.

Collaboration

reflection

Reflection piece includes:

Brainstorming ideas•

Construction•

Programming•

Beta testing•

Reflection piece lacks 1 of

the required elements.

Reflection piece lacks 2 of

the required elements.

Reflection piece

lacks 3 of the required

elements.

 04.Conditionals Page 74

CSTA K-12 Computer Science Standards

CL.L2-03 Collaborate with peers, experts, and others using collaborative practices such as

pair programming, working in project teams, and participating in group active learning

activities.

•

CL.L2-04 Exhibit dispositions necessary for collaboration: providing useful feedback,

integrating feedback, understanding and accepting multiple perspectives, socialization.

•

CL.L3A-01 Work in a team to design and develop a software artifact.•

K-12 Computer Science Framework Core concept: Control Structures •

Standards

 04.Conditionals Page 75

https://www.csteachers.org/?page=CSTA_Standards

Iteration & Looping

This lesson introduces the concept of looping and iteration. Presents the 'While' block as a

combination of an iteration and a conditional statement.

Lesson Objectives

Understand the value of iteration in programming•

Understand looping as a form of iteration•

L L ‘ ’, ‘ ’, ‘ ’•

Apply the above knowledge and skills to create a unique program that uses iteration and

looping as an integral part of the program

•

 …

Introduction: Lather. Rinse. Repeat.•

Unplugged Activity: Walk a Square pseudocode•

Micro:bit Activities: Code a Sprite to Walk a Square, Travelling Light, Micro:bit Alarm!•

Project: Get Loopy!•

Project Mods: Use servo motors to add a motion element to the project•

Assessment: Rubric •

Standards: Listed•

Lesson Plan Structure

Introduction

In computer programming, iteration is the repetition of a sequence of code. A loop is a form of

iteration. A loop repeats code until a certain condition is met.

Do you use shampoo to wash your hair? Most will say ‘Yes’.•

Have you ever read the instructions on a bottle of shampoo? Most will say ‘No’.•

Questions for the students:

Most of us have never read the instructions on a bottle of shampoo, because we already know

how to use shampoo.

What algorithm could you write for shampooing your hair?

1) Wet hair.

2) Apply shampoo to wet hair

3) Scrub shampoo into hair

4) Rinse shampoo out of hair

Example:

If you did read the instructions on a bottle of shampoo, you may read similar instructions as the

 ‘R ’

How does this one extra step affect the algorithm?

Iteration

 05.Iteration Page 76

I , ‘ ’

 I ‘ ’ ‘ ’

no condition that ends the looping.

DBwebsolutions.com

‘R R ’

What other common activities involve repetitive actions? Examples: Singing (choruses repeat),

dancing, school cheers, walking and running, exercise routines...

Optional

 ‘L , R , R ’

Lather, Rinse, Repeat: Hygiene Tip or Marketing Ploy

By Lauren Goldstein

October 11, 1999

http://archive.fortune.com/magazines/fortune/fortune_archive/1999/10/11/267035/index.htm

(FORTUNE Magazine) – In Benjamin Cheever's novel The Plagiarist, a marketing executive

becomes an industry legend by adding one word to shampoo bottles: REPEAT. He doubles

 05.Iteration Page 77

http://archive.fortune.com/magazines/fortune/fortune_archive/1999/10/11/267035/index.htm

becomes an industry legend by adding one word to shampoo bottles: REPEAT. He doubles

shampoo sales overnight.

This bit of fiction reflects a small yet significant eddy of U.S. consumer angst: If we REPEAT, are

we or are we not playing into the hands of some marketing scheme? It turns out that in real life

there's a reason you should repeat, or at least there used to be. In the 1950s, when shampoos

began to be mass-marketed, we didn't wash our hair all that often--once or twice a week, as

opposed to five times a week as most of us do now. Also, we used a lot more goop in our hair.

It was the age of Brylcream and antimacassars, remember. Paul Wallace, the director of hair-

care research and development for Clairol, says that when cleaning agents in shampoo came up

against that amount of oil and goop, "it depressed the lather." A second application was

needed to get the suds that consumers expected. Lots of suds mean that hair is already clean.

Maybe too clean (there's no oil to break through), but consumers like it.

FORTUNE asked Frederic Fekkai, the noted and notably expensive New York City hairdresser,

what he thought about the double lather. He says, "Yesterday I put oil on my hair for a different

look and went to a restaurant where the smoke was horrible. This morning I realized I had to do

two shampoos."

At any rate, Wallace says advances in shampoo technology mean that only one application of,

for instance, Clairol's Herbal Essences is sufficient to break through the oiliest hair. The

company has stricken the use of both REPEAT and REPEAT IF DESIRED from all Clairol products.

Yet a lot of brands, like Suave by Unilever and L'Oreal, still say REPEAT. Others, like Unilever's

Finesse and Revlon's Flex, opt for the less imperative REPEAT IF DESIRED. Procter & Gamble

uses REPEAT IF NECESSARY on Pantene.

Getting consumers to wash twice can, of course, increase sales--in ways one might not imagine.

Double sudsing leads to dry hair, Fekkai points out, and that means more beauty products!

"When you do two shampoos, even if you don't usually use a conditioner, you have to use a

little," he says. "The conditioner becomes very important." REPEAT. FOLLOW WITH

CONDITIONER. Words Cheever's marketer could have retired on.

--Lauren Goldstein

From Wikipedia (https://en.wikipedia.org/wiki/Lather,_rinse,_repeat):

Lather, rinse, repeat (sometimes wash, rinse, repeat) is an idiom roughly quoting the

instructions found on many brands of shampoo. It is also used as a humorous way of pointing

out that such instructions if taken literally would result in an endless loop of repeating the same

steps, at least until one runs out of shampoo. It is also a sarcastic metaphor for following

instructions or procedures slavishly without critical thought.

 05.Iteration Page 78

https://en.wikipedia.org/wiki/Lather,_rinse,_repeat

Objective

To reinforce the concept of iteration by having students act out the repeated steps of an

algorithm in real life.

Overview

Students will give the teacher instructions to do a simple activity, then look for places where

using iteration could shorten their code and make it more efficient.

Place a chair in the front of the room.•

Stand at the back right side of the chair facing the students.•

Ask the students what instructions they could give you that when followed would lead you

to walk around the chair, ending up just as you started. You may want to demonstrate

what this would look like by walking around the chair.

•

Tell the students you can only process one instruction at a time, so their algorithm needs

to be step-by-step.

•

As students suggest instructions write them on the board or wherever everyone can see

them.

•

Step forward1)

Turn left2)

Step forward3)

Turn left4)

Step forward5)

Turn left6)

Step forward7)

Turn left8)

Their pseudocode will probably end up looking something like this:

Go ahead and follow their algorithm to prove that it works.•

B ’ !

Process

Unplugged: Walk a Square

 05.Iteration Page 79

B ’ !

just three lines of code. If they have not noticed already, have students look for places

where the code repeats.

Tell them that whenever you have code that repeats, you have an opportunity to use a

loop to simplify your code.

•

What lines are repeated? 1) Step forward. 2) Turn left.○

How many times are they repeated? Four○

So how could we rewrite this code? Students will suggest a version of the following:○

Step forward1)

Turn left2)

Repeat 4 times:

Prompts:•

Go ahead and follow their revised algorithm to prove that it works.•

There! They have just rewritten eight lines of code as three lines of code, by using a loop.

 ‘ ’

of times until a condition is met. The condition in this algorithm is that the code in the loop is

repeated 4 times. Once this condition is met, the program exits the loop.

This is a great opportunity to have the students think of the benefits of having fewer lines of

code. Some possible reasons: Less typing, saves time, fewer chances of making a mistake, easier to

read the code, fewer lines of code to debug...

Depending on the particular class, you can make this exercise more challenging, by

requiring the students to be more specific in their instructions.

•

For example: Step forward 14 inches (you can have students actually measure the exact

 , 9 …

Notes

 05.Iteration Page 80

'Repeat' block•

'While' block•

'For' block•

Microsoft MakeCode has three different loop blocks:

To start, the students can code the same algorithm they created in the unplugged activity using

a loop.

‘Repeat’ block

Code a Sprite to walk a square. Have students click on the Loops category in the Toolbox, and

look at the three choices available.

 ‘ ’ ! H

W ’ parameter.

A parameter is a type of variable used as input to a function or routine. In this case, the

parameter tells the repeat block how many times we want the code within the block to repeat.

F , ’

To create a sprite that will walk a square:

Click on the Advanced category in the Toolbox. This will open up a more advanced menu

of blocks.

•

 G , ‘ ’ •

Activity: Loops Demos

 05.Iteration Page 81

W ’ G R ‘W q ’

pseudocode, see if the students can find the blocks they need for moving their sprite and

turning their sprite.

•

D ‘ ’ ‘ ’ •

They now have these blocks in their coding workspace. •

F , ‘ ’ •

We want our sprite to start in the top left corner of the micro:bit screen, so change the

parameters for both x and y to zero.

•

To make the sprite move from one side of the screen to the other (as though walking

around a chair), change the move by parameter to 4.

•

 q , ‘ ’ 90. For

now, it's OK to leave the sprite turning right instead of left as we did in our pseudocode.

•

Time to fix those default parameter values!

Your blocks now look like this:

 05.Iteration Page 82

N ’

event handlers.

On start, we want the sprite to appear. To make this happen, go to the Variables menu and

 ‘ ’

•

 ‘ ’ ‘ ’ •

 ‘ ’ ‘ ’ •

let item: game.LedSprite = null
item = game.createSprite(0, 0)

You should now see the sprite appear in the top left of the microbit simulator.

 , ‘ ’

the Input menu.

•

 ‘ ’ ‘ ’ •

 ‘ ’ ‘ ’ •

 ‘ ’ ‘ ’ ‘ ’ •

input.onButtonPressed(Button.A, () => {
 for (let i = 0; i < 4; i++) {
 item.move(4)
 item.turn(Direction.Right, 90)
 }

 05.Iteration Page 83

 }
})

Go ahead and run the program. Make the sprite move by pressing button A.

What happened? Did you see the sprite move? No?

Slo-Mo

Click on the snail icon under the micro:bit simulator. •

A helpful feature of Microsoft MakeCode is "Slo-Mo", or slow-motion mode.

This will slow down the execution (running) of the program, and highlight parts of your code so

you can see step-by-step, which line of code is being processed.

Now run your program several more times. Do you see the different lines of your code

highlighted as the program runs? Do you see the sprite move?

Slo-Mo in Blocks

Slo-Mo in JavaScript

So, the code is running and the sprite is moving! Sometimes we forget just how fast computers

 ‘ ’ ,

right after each time the sprite moves. This will give our human eyes a chance to see it move.

 05.Iteration Page 84

right after each time the sprite moves. This will give our human eyes a chance to see it move.

Click the snail icon again to turn off Slo-Mo.•

F B , ‘ ’

 ‘ ’ ‘ ’

•

Your final program should look like this:

let item: game.LedSprite = null
input.onButtonPressed(Button.A, () => {
 for (let i = 0; i < 4; i++) {
 item.move(4)
 item.turn(Direction.Right, 90)
 basic.pause(100)
 }
})
item = game.createSprite(0, 0)

WalkaSquare

 05.Iteration Page 85

https://makecode.microbit.org/33805-66151-10540-78180

Run your program again. Now we can see the sprite move. It still moves pretty quickly, but at

least we can see it move.

If there is time, let the students experiment with changing the parameters to see how these

changes affect their program.

We just used the first of the 3 different types of Loop blocks available to us. What about the

 , ‘ ’ ‘ ’?

‘For’ block: Traveling Light

 ‘ ’

 W ? L ’

at an example.

L ’ ,

Turn led x:0, y:0 on

Pause

Turn led x:0, y:0 off

Pause

Turn led x:1, y:0 on

Pause

Turn led x:1, y:0 off

Pause

Turn led x:2, y:0 on

Pause

Turn led x:2, y:0 off

Our pseudocode for the first row might look like this:

 05.Iteration Page 86

Turn led x:2, y:0 off

Pause

Turn led x:3, y:0 on

Pause

Turn led x:3, y:0 off

Pause

Turn led x:4, y:0 on

Pause

Turn led x:4, y:0 off

 ’ ,

What is the only variable that is changing in this pseudocode? The value of the x

coordinate.

•

How much is the value of the x coordinate changing each time? The value of the x

coordinate is changing by 1 each time.

•

What is the range of values for the x coordinate? The range of values for the x coordinate

is 0 through 4.

•

N ’ !

F L , ‘ ’ •

 ’ , , xindex.•

W ’ F L ,

a 'plot' block and an 'unplot' block to the coding workspace.

•

F B , ‘ ’ •

 ‘ ’ ‘ ’ , ‘ ’ , ‘ ’

block, the second 'pause' block.

•

 ‘ ’ •

L ’

 ‘ ’ ‘ ’ ‘ ’ •

Change the value of the x coordinates in the plot and unplot blocks to this same variable. •

 05.Iteration Page 87

let index = 0
basic.forever(() => {
 for (let xindex = 0; xindex <= 4; xindex++) {
 led.plot(xindex, 0)
 basic.pause(100)
 led.unplot(xindex, 0)
 basic.pause(100)
 }
})

We can use the default values for the rest of the parameters.

You should now see a light moving from left to right along the top row of the micro:bit

simulator.

To make our pattern continue through all the leds, we can change the value of the y coordinate

as well.

To do this efficiently, using the fewest lines of code, we can even put a loop inside a loop. Loops

inside other loops are known as nested loops.

So that we can change the value of the y coordinate, make a new variable, named yindex.•

D ‘ ’ L •

 ‘ ’ ‘ ’ , •

 ‘ ’ ‘ ’ ‘ ’ •

Change the value of the y coordinates in the plot and unplot blocks to this same variable. •

 05.Iteration Page 88

let index = 0
let yindex = 0
basic.forever(() => {
 for (let yindex = 0; yindex <= 4; yindex++) {
 for (let xindex = 0; xindex <= 4; xindex++) {
 led.plot(xindex, yindex)
 basic.pause(100)
 led.unplot(xindex, yindex)
 basic.pause(100)
 }
 }
})

There! With only a half dozen or so lines of code, we have made our light travel through all the

coordinates on the micro:bit screen.

Check: Make sure the students can read this code.►

Here is what is happening to the values of the x & y coordinates as the program steps through

each line and loop inside the forever block:

In the outer of the two for loops, the value of the y-coordinate is set to 0.1.

The nested inner loop then sets the value of the x-coordinate to zero.2.

The corresponding led (x:0, y:0) is plotted and then unplotted.3.

Then the value of the x-coordinate is increased by 1 and step #3 runs again with the

coordinates now (x:1, y:0).

4.

Then the value of the x-coordinate is increased by 1 again and step #3 runs again with the

coordinates now (x:2, y:0).

5.

The inner loop keeps running like this until it has completed its loop with the value of the x

coordinate now 4.

6.

With the inner loop complete, the program now runs the second iteration of the outer

loop, increasing the value of the y-coordinate by 1, then back to the inner loop which runs

4 more times stepping through values for x from 0 through 4.

7.

Have the students use the Slo-Mo mode to watch the program step through the loops.

By the end of the program run, how many times has the inner loop executed? 25•

Other than knowing that there are 25 LEDs and each is lit up once, how can you figure this

out? The outer loop loops 5 times altogether, once for every value of the y coordinate from 0

through 4. Each time the outer loop runs, the inner loop runs 5 times, once for every value of

the x coordinate from 0 through 4. 5 runs of the outer loop x 5 runs of the inner loop = 25

times the inner loop executes.

•

If there is time, let the students experiment with changing the parameters to see how

these changes affect their program.

•

What happens if you switch the positions of the nested loops, so the outer loop loops

through the xindex values and the inner loop loops through the yindex values?

•

W ‘ ’ ‘ ’ ?•

Mods

 05.Iteration Page 89

‘While’ block: Micro:bit Alarm!

The while block is useful when you want your program to loop until a certain event happens or a

different condition is met.

For example, maybe you want an alarm to sound if someone shakes your micro:bit!

In order to turn the alarm off, you press the button A. Until you press the button, the alarm

should continue to sound!

Y ' ' ‘ ’

input.onGesture(Gesture.Shake, () => {
 while (!(input.buttonIsPressed(Button.A))) {
 for (let i = 0; i < 2; i++) {
 music.playTone(262, music.beat(BeatFraction.Half))
 music.playTone(523, music.beat(BeatFraction.Half))
 }
 }
})

Alarm

 05.Iteration Page 90

https://makecode.microbit.org/_iVr5Lc5L0iCE

Can you read what this code does?•

Can you write out pseudocode that describes what this code does?•

Example Pseudocode:

When someone shakes the microbit, while button A is not pressed, play the two tone alarm twice.

Keep playing the alarm tones until the user presses the A button.

To use sound with your micro:bit, you will need to connect it to some speakers or headphones.

See how to do this here: https://pxt.microbit.org/projects/hack-your-headphones

 05.Iteration Page 91

https://pxt.microbit.org/projects/hack-your-headphones

There are many different ways to use the three types of loop blocks.

How will you use loops to create something useful, entertaining, or interesting?•

What might you make?•

Recall the different common repetitive actions you thought of back at the beginning of this

lesson.

Create an animated gif (looping image that changes) and add music that matches.•

Create animation that repeats for one of the melodies included in Make Code (like Happy

Birthday).

•

Create different animations that run when different buttons are pressed.•

Create an alarm that includes sound and images. What will set the alarm off? What will

make the alarm stop sounding?

•

Use servo motors to create a creature that dances and changes its expression while a song

plays.

•

Here are some suggestions:

Example

Hat Man Project

Hat Man Videos

micro:bit Hat Man

Project: Get Loopy!

 05.Iteration Page 92

https://youtu.be/Xvybu_T5IL8

micro:bit Hat Man - inside

This project uses the micro:bit light sensor to display a happy face when it is sunny, and a

frowning face when it is dark. The micro:bit is connected to a servo mounted on the inside of

the container, and the smile and frown are attached to plastic coffee stirrers with tape and hot

glue.

Reflection

Explain how you decided on your particular "loopy" idea. What brainstorming ideas did

you come up with?

•

What type of loop did you use? For, While, or Repeat •

What was something that was surprising to you about the process of creating this

program?

•

Describe a difficult point in the process of designing this program, and explain how you

resolved it.

•

What feedback did your beta testers give you? How did that help you improve your loop

demo?

•

Have students write a reflection of about 150–300 words, addressing the following points:

Assessment

 05.Iteration Page 93

https://youtu.be/ZfKgFQjygQQ

Assessment

4 3 2 1

Loops At least 3 different

loops are

implemented in a

meaningful way

At least 2 loops are

implemented in a

meaningful way

At least 1 loop is

implemented in a

meaningful way

No variables are

implemented.

Variables

(parameters)

All variable names

are unique and

clearly describe

what information

values the variables

hold.

The majority of

variable names are

unique and clearly

describe what

information values

the variables hold.

A minority of

variable names are

unique and clearly

describe what

information values

the variables hold.

None of the

variable names

clearly describe

what information

values the

variables hold.

Sound,

display, and

motion

Uses sound,

display, and

motion in a way

that is integral to

the program

Uses a only two of

the required

element in a way

that is integral to

the program

Uses a only one of

the required

element in a way

that is integral to

the program

None of the

required

elements are

used.

Micro:bit

program

Micro:bit

program:

Uses loops in a

way that is

integral to the

program

•

Compiles and

runs as intended

•

Meaningful

comments in

code

•

Micro:bit program

lacks 1 of the

required elements

Micro:bit program

lacks 2 of the

required elements

Micro:bit

program lacks 3

or more of the

required

elements

Collaboration

reflection

Reflection piece

includes:

Brainstorming

ideas

•

Construction•

Programming•

Beta testing•

Reflection piece

lacks 1 of the

required elements.

Reflection piece

lacks 2 of the

required elements.

Reflection piece

lacks 3 of the

required

elements.

 05.Iteration Page 94

CSTA K-12 Computer Science Standards

CL.L2-05 Implement problem solutions using a programming language, including: looping

behavior, conditional statements, logic, expressions, variables, and functions.

•

CL.L3A-03 Explain how sequence, selection, iteration, and recursion are building blocks of

algorithms.

•

Standards

 05.Iteration Page 95

https://www.csteachers.org/?page=CSTA_Standards

In this unit, we will be reviewing the concepts we covered in the previous weeks, and providing

 “ - ”

We will also introduce a framework for keeping students accountable to the work they are doing

individually and in groups, and providing a rubric for assessment of the development process, as

well as the finished product.

It is important to allow students to practice accounting for the work they are doing on a short

“ - ” ,

weeks, it will be easier for you to keep track of what everybody is doing.

It also reinforces the important idea that how you solve problems is at least as important to

learning as whether you solved them at all (or even got the right answer). Programming is a

process of patient problem-solving, and finding ways to value, acknowledge, and reward the

problem-solving process is an important part of assessment.

Introduction

 06.Mini-Project Page 96

Take this time to review the concepts we have covered so far.

Making

The micro:bit is very effective at bringing real things to life. It can be supported in a cardboard holder, attached to a

wand, or even sewn into fabric. The design thinking process is a helpful way to gather more information about the

person who will be using whatever you are designing.

Processing and Algorithms

The code you write for the micro:bit processes data from its inputs, and outputs it in some way. An algorithm is a series

of specific instructions, or steps, that solve a problem or accomplish a task.

Variables

Variables store information so that it can be accessed or referenced later. Some variables hold information that

changes, and some hold information that stays constant. It is important to name your variables with something that

explains what type of information it holds. Using variables in your code allows you to create algorithms that use

mathematical operations to perform the same calculations every time, even when the values of your variables are

different.

Conditionals

Conditional statements tell the computer when to do something. They are used to create branches, or decision points,

where a program can choose one path or the other based on the values of certain variables, or based on data from the

 ’

order for the enclosed statements to run.

Iteration and Looping

Portions of your code can be made to run over and over by using a Repeat or a For block loop. This allows you to

iterate over several different variables, or items in a group, and do something to each of them. You can also combine a

conditional statement and a loop by using a While block, which will repeat until a certain condition becomes true.

Review

 06.Mini-Project Page 97

This project takes approximately a week to complete. Most of that time is spent working on the project in a

makerspace or art classroom.

Show what you know•

Learn something new•

The mini-project is an opportunity for students to design a project that serves a purpose by solving a problem or

filling a need. It is also an opportunity to do two things:

Ideally, there should be a maker component to this project. This is a real world component that works with the code

on the micro:bit to do something unique.

Students are asked to each propose an original independent project. Students are allowed to work on the same idea,

but they cannot turn in the same code. They can, and should work collaboratively, solving the same kinds of

problems together, but the projects they turn in should be unique and original.

Showcasing Student Work

Students will be showing their work regularly to each other in informal ways. Think about also organizing a day or an

evening when parents, administrators, or others from the community are invited to come and view the students'

projects.

A real world audience for the work students have done can be very motivating•

It is a chance for people who are not familiar with the micro:bit to appreciate the finished product•

It provides good feedback to students about how someone interacts with their product•

It is a chance to have real conversations with the people behind the product, rather than just viewing the

product on display by itself

•

Finally, and most importantly, it is a chance to bring the community together to celebrate the great work all of

your students have done!

•

We find that a "science fair" type of setup works well here, with students stationed at their own tables, showing off

and demonstrating their project. An event like this works well for these reasons:

Create an original project using the micro:bit.•

Incorporate a physical component to the project.•

Input / Processing / Output○

Variables○

Simple Circuits○

Iteration/Loops○

Conditional Statements○

Demonstrate the use of one of the following concepts:•

Assignment

 “N I ” F •

Make a Moving Monster•

Make a musical instrument•

Fishing Game•

Make an Air Guitar (uses while loop to do tempo and pitch)•

Screensaver•

Screensaver that uses other inputs to draw•

Interactive book

Project Ideas

Project: Mini-Project

 06.Mini-Project Page 98

Interactive book•

Binary Clock or some other way to represent numbers visually•

http://make.techwillsaveus.com/bbc-microbit•

http://microbit.org/ideas/•

https://twitter.com/MicroMonstersUK•

https://pxt.microbit.org/projects•

View projects at the following sites for inspiration:

Examples

Toss the Ball

This is a skill game in which an aluminum foil ball is thrown into a plastic cup. Copper tape lining the sides and

bottom of the cup completes the circuit when the ball touches it.

micro:bit Bullseye Project

 06.Mini-Project Page 99

http://make.techwillsaveus.com/bbc-microbit
http://microbit.org/ideas/
https://twitter.com/MicroMonstersUK
https://pxt.microbit.org/projects
https://youtu.be/NZUpoSixf4E

This is a skill game in which tennis balls are thrown underhand at one of the three rings, which are lined with

aluminum foil so they complete a circuit underneath when the ball makes contact with the ring.

micro:bit Storybook

This is a prototype of a storybook that could use the micro:bit to display animations for part of the story. Copper

tape is used on the underside of the paper flaps to make contact between the GND pin and each of the other pins in

sequence.

Work Logs

Because students are working on the projects in class, and much of the benefit comes from working together to solve

problems, they should account for the work they are doing by writing a work log.

 , , I ’

more than thirty seconds or so to write up a work log. Students should do one for every class. A shared Microsoft

OneNote notebook is a great way to keep a work log that students can update regularly. Alternately, you might use a

collaborative shared document, or your classroom management system, or even e-mail.

April 11

20 min. Created code that reacts when pins P0 and P1 are pressed.

10 min. Talked with Mr. Kiang about how to attach wires so they won’t fall off

20 min. Put target back together with pins

10 min. Helped Cody with attaching his scoreboard

Sample Work Log

 06.Mini-Project Page 100

https://youtu.be/yg1NNLMqa9c

10 min. Helped Cody with attaching his scoreboard

Reflection

At the end of the week, students should compose a final reflection that summarizes the process of their learning over

the course of the week. They should go back through their work logs and talk about the following:

Talk about one challenge you faced in creating this project, either a challenge in coding or in making the

artifact. How did you overcome this challenge?

•

What did you demonstrate that you already knew?•

What was the new thing you learned in order to make this? How did you learn about it?•

Who in the class provided help to you along the way? How?•

Describe one specific thing you are proud of in this project.•

What would you do differently next time?•

If you had another week to work on this project, what might you add or improve?•

“I spent this week finishing up little details with my program, making it work better and more user friendly. The

part that surprised me the most was the little things that kept popping into my head, little suggestions that could

potentially be good to add, but might not be necessary or even useful. At the beginning of the assignment, I just

added them as quickly as I thought of them, but as the project neared the midpoint and conclusion, I find myself

considering if I actually need them (as previous additions have been since quickly deleted). Another thing that I find

interesting about this is that it is a rather specialized project. Not many people would use it except for me.

However, this is supposed to be easily used by other people, so I have to take them into consideration as I design

the project. I also realized that I had, at some point, broken part of my code without realizing it, so I now have to

fix part of it. The reason that it is a problem is because I added a lot of code at once without deleting it, which is

unfortunate. Next time I will add small amounts of code and test it first.”

Sample Reflection (excerpt)

Assessment

4 3 2 1

Code -

Show what you

know

Code very effectively

demonstrates the use of previous

concept(s). Variable names are

unique and clearly describe what

information values the variables

hold. Code is highly efficient.

Code only partially

demonstrates

previous concepts,

and/or is not

efficient.

Code only partially

demonstrates

previous concepts,

and/or is not

efficient, variable

names not clear.

Code does not

demonstrate

previous concepts,

is not efficient,

variable names not

clear.

Code -

Show something

new

Code very effectively

demonstrates the use of new

concept(s). Variable names are

unique and clearly describe what

information values the variables

hold. Code is highly efficient.

Code only

minimally

demonstrates new

concepts, and/or is

not efficient.

Code only

minimally

demonstrates new

concepts, and/or is

not efficient,

variable names not

clear.

Code does not

demonstrate new

concepts, is not

efficient, variable

names not clear.

Maker

component

Tangible component is tightly

integrated with the micro:bit and

each relies heavily on the other to

make the project complete.

Tangible

component is

somewhat

integrated with the

micro:bit but is not

essential.

Tangible

component does

not add to the

functionality of the

program.

No tangible

component

Work Logs All work logs submitted on time,

and accurate

One late or missing

work log and/or

Two late or missing

work logs and/or

More than two late

or missing work

 06.Mini-Project Page 101

and accurate work log and/or

work logs not

accurate nor

sufficiently

detailed.

work logs and/or

work logs not

accurate nor

sufficiently detailed.

or missing work

logs and/or not

accurate nor

sufficiently detailed.

Reflection Reflection piece describes:

Development Process•

Something new•

Something proud of•

Future mods•

Reflection piece

lacks 1 of the

required elements.

Reflection piece

lacks 2 of the

required elements.

Reflection piece

lacks 3 of the

required elements.

 06.Mini-Project Page 102

Teachers want their students to collaborate on projects but they also want to be able to hold them accountable

for getting their work done. Many teachers struggle with assessing exactly how much each individual contributed

 , “ ”

The Mini-Project (and the Final Project) are not group projects. Students are asked to propose their own

independent project and are expected to get it done. But they are not on their own in this process! We build in

frequent opportunities for students to collaborate and share the collective knowledge of the class as they go. We

 “ ”

Here is how we structure our classes:

Beginning of class

One-line description of project•

Their progress so far•

Something they are going to work on figuring out today•

For groups of 15 or so, have students each briefly (no more than 30 seconds or so) report on their progress in

front of the group:

Example:

I’m working on a pinball machine. So far I have done the board and the ramp. Today I am going to be working

on wiring the bumpers so that when the ball hits the bumper, the micro:bit detects it and displays the score.

It is important that everyone else is listening to each project and volunteering their help or solutions if they are

figuring out the same thing or if they have solved that problem in a previous class.

Sample response from a classmate:

Yesterday I wired up my targets so that when you throw a ball it keeps score. I can show you how I did it.

Ideally students who are working on projects should be aware of what other students are working on and what

they are figuring out. It creates more opportunities for collaboration in the classroom and can encourage

students to seek help from each other rather than all waiting in line to talk to you.

I ’ ’ F

15 or 20 students, you may want to split them into two or three larger groups and have them report out to each

other.

During Class

Activity: Collaboratively Independent

 06.Mini-Project Page 103

During Class

This is a time to circulate and check in with students individually, starting with those students who seem to still be

stuck from last time. For the most part, students should be working on their projects in small groups, helping

each other wherever and whenever possible.

End of Class

 , “ -in- ” G

students together and have them move from table to table while each student presents one thing that he or she

figured out during the class. This is really an informal presentation, and it is understood that it is not finished at

 ; “ ” B ,

one throughout the classroom, almost like physicians making rounds in a hospital. This is an important way to

 , “ - ” q

Work-in-progress reports should be short, no more than twenty or thirty seconds. If you have a large class, you

might divide the class into several large groups and have them present to each other.

 06.Mini-Project Page 104

CSTA K-12 Computer Science Standards

CL.L2-03 Collaborate with peers, experts, and others using collaborative practices such as

pair programming, working in project teams, and participating in group active learning

activities.

•

CL.L2-04 Exhibit dispositions necessary for collaboration: providing useful feedback,

integrating feedback, understanding and accepting multiple perspectives, socialization.

•

CL.L2-05 Implement problem solutions using a programming language, including: looping

behavior, conditional statements, logic, expressions, variables, and functions.

•

Standards

 06.Mini-Project Page 105

https://www.csteachers.org/?page=CSTA_Standards

This lesson introduces the use of coordinates to store data or the results of mathematical operations. It gives

students practice programming for the LEDs of the micro:bit screen using coordinates. And introduces the basic

game blocks of MakeCode.

Lesson Objectives

Understand that the 5 x 5 grid of LEDs on the micro:bit represent a coordinate grid with the origin (0,0) in

the top left corner.

•

Understand that the values of the x coordinates range from 0 through four and increase from left to right.•

Understand that the values of the y coordinates range from 0 through four and increase from top to bottom.•

Learn how to refer to an individual LED by its x & y coordinates.•

Learn how to plot (turn on) and unplot (turn off) individual LEDs and how to toggle between these two

states.

•

Learn how to check the current on or off status of an individual LED as well as check and set the brightness

level.

•

Apply the above knowledge and skills to create a unique program that uses coordinates as an integral part

of the program.

•

 …

Introduction: Coordinate Grid•

Unplugged Activity: Battleship•

Micro:bit Activities: Animation and Patterns•

Project: Screensaver or Game•

Assessment: Rubric •

Standards: Listed•

Lesson Plan Structure

Introduction

Through math class, most middle school students are already familiar with coordinate grids and mapping x and y

coordinates on a plane. To review some terms:

an x-axis which runs horizontally and ▪

a y-axis which runs vertically.▪

The basic coordinate grid a student learns has two axes, ○

Axes

These two axes meet at a point called the origin where both the x and the y values are zero.○

On this basic coordinate grid, the origin is in the lower left corner of the grid and has the coordinates

(0,0).

○

Origin

The first value in a coordinate pair is the x value and the second value in a coordinate pair is the y

value.

○

A simple way to remember which value comes first is to remember their order in the alphabet. The

letter x comes before the letter y in the alphabet and the x coordinate comes before the y coordinate in

a coordinate pair.

○

Coordinate pair

Coordinate value changes

Coordinate Grid and LEDs

 07.Coordinate Grid and LEDs Page 106

the value of the x coordinate increases left to right and is a measure of how many units a point is

horizontally from the origin

▪

the value of the y coordinate increases bottom to top and is a measure of how many units a point

is vertically from the origin

▪

On a basic coordinate grid, ○

Coordinate value changes

Coordinate grid and JavaScript and the micro:bit

The 5 x 5 grid of LEDs on the micro:bit represent a coordinate grid with a horizontal x-axis and a vertical y-axis. It

has an origin and you can refer to the position of the LEDs with coordinate pairs.

the origin (0,0) is in the top left corner.•

the values of the y coordinates range from 0 through four and increase from top to bottom.•

It is important however that the students understand the two major differences between the micro:bit LED grid

and the coordinate grid that they are used to using in math class:

The values of the x coordinates range from 0 through four and increase from left to right just as they do in

the coordinate grids used in math class.

•

Note:

 07.Coordinate Grid and LEDs Page 107

Sidebar material

(image credit: Wikipedia Commons)

René Descartes (1596-1650), was a French philosopher and mathematician who developed the coordinate system

we use today. A story goes that while lying in bed, he noticed a fly on the ceiling. In wondering how he could

 ’ ,

 ’

horizontally and then vertically to reach the fly. His coordinate system proved useful in many ways including

creating an important link between the studies of algebra and geometry. Geometric shapes could now be

described by points on a coordinate plane.

 07.Coordinate Grid and LEDs Page 108

The game Battleship is perhaps the most fun a student can have practicing using a coordinate

grid. The original Battleship game is a 10x10 grid with numbers on one axis and letters on the

other.

To help us practice using the correct coordinates for the grid of micro:bit LEDs, let the students

play a smaller 5x5 version of Battleship using x and y coordinates instead of letters and

numbers.

Have students make their own sets of 5x5 grids to reinforce the layout of the micro:bit grid.

Each student should make two grids. One grid is for placing their own ships and keeping track

 ’

 ’

 ’ ’

misses.

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,3) (1,3) (2,3) (3,3) (4,3)

(0,4) (1,4) (2,4) (3,4) (4,4)

O ’ ’

ships.

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,3) (1,3) (2,3) (3,3) (4,3)

(0,4) (1,4) (2,4) (3,4) (4,4)

Then pair the students to play against a partner. Each student's ships are hidden somewhere on

their 5x5 grid. Students should be taking turns calling their shots using x and y coordinates, in

the proper order. Their opponent will use those coordinates to plot the location of their shots.

If a hit is recorded on a ship, then you say, "Hit". If the shot misses, you say, "Miss". If the entire

length of a ship is hit, it is sunk and removed from play. Tradition dictates that the player

announces, "You sank my battleship!"

Since their grid is only one quarter the size of the original Battleship grid, students can use fewer

and smaller ships. For example, they could play with 3 ships, one each of size 3, 2, and 1.

The game can be played with just paper and pencils or you could use small tokens and markers,

Unplugged: Battleship

 07.Coordinate Grid and LEDs Page 109

The game can be played with just paper and pencils or you could use small tokens and markers,

like coins, buttons, or paper clips to represent the ships.

 ’

again with white board (dry erase) markers.

•

The official rules of Battleship are easily found on the internet. Modify them as needed for

your particular class.

•

Notes

The original Battleship Board Game

 07.Coordinate Grid and LEDs Page 110

Guide the students to create programs using coordinates and LEDs. Each of these short exercises demonstrates

how to use coordinates to control the LED ’

more complex projects.

Smile animation - A short exercise in plotting and toggling LEDs to create a simple animation.•

Random Patterns generator - A short exercise using a loop to generate random LED patterns and then

checking the status of a specific LED.

•

Brightness - A short exercise in using the brightness settings for the micro:bit LEDs.•

Smile Animation

Though students can use the 'show leds' block for images and animation, there is another way to tell the

micro:bit what LEDs to turn on and off using coordinates.

•

We can still use the 'show leds' block to plan which LED coordinates to turn on•

Drag out a couple 'show leds' blocks from the Basic Toolbox drawer.•

Create a smiling face and a non-smiling face.•

A short exercise in plotting and toggling LEDs to create a simple animation.

Tip: you can also right-click on a block and select Duplicate to copy blocks○

From the LED Toolbox drawer, drag out 6 'plot x y' blocks.•

Have the students compare the two face images and determine which LEDs are on in both images. •

Plot these LEDs using the correct (x,y) coordinates.•

When done, place these 'plot x y' blocks inside an 'on start' block.•

led.plot(1, 0)
led.plot(3, 0)
led.plot(2, 1)
led.plot(1, 3)
led.plot(2, 3)
led.plot(3, 3)

Now we can code for the 4 LEDs that change back and forth, on and off, as we switch from one face to the other

Activity: Animation and Patterns

 07.Coordinate Grid and LEDs Page 111

Now we can code for the 4 LEDs that change back and forth, on and off, as we switch from one face to the other

and back again over and over.

From the LED Toolbox drawer, drag out 4 'toggle x y' blocks. •

Replace the default values with the correct (x,y) coordinates. •

The 'toggle x y' block will change the status of an LED from on to off or off to on.

Place these 4 'toggle x y' blocks in a 'forever' block. •

Place the two 'toggle x y' blocks that create the smile first, followed by the two 'toggle x y' blocks for the

non-smile.

•

Y q L ’ ' '

between the two pairs of 'toggle x y' blocks. Set the pause value to 250 milliseconds.

•

Here is the full program:

basic.forever(() => {
 led.toggle(0, 2)
 led.toggle(4, 2)
 basic.pause(250)
 led.toggle(0, 3)
 led.toggle(4, 3)
})
led.plot(1, 0)
led.plot(3, 0)
led.plot(2, 1)
led.plot(1, 3)
led.plot(2, 3)
led.plot(3, 3)

SmileAnimation

 07.Coordinate Grid and LEDs Page 112

https://makecode.microbit.org/55400-20546-97729-25040

Add a third image to the animation, perhaps a frown face. •

Make your own custom animation! What LEDs stay the same and which need to be toggled?•

Mod this!

Random Patterns generator

A short exercise using a loop to generate random LED patterns and then checking the status of a specific LED.

O ’ L D •

Our display will have one LED lit for each column or x coordinate value from 0 through 4.•

Pseudocode:

From the Input Toolbox drawer, select the 'on button pressed' block•

From the Basic - More Toolbox drawer, drop in a 'clear screen' block•

From the Loops Toolbox drawer, drop in a 'for' block•

From the LED Toolbox drawer, drop a 'plot x y' block•

Use the variable 'index' for the x value•

From the Math Toolbox drawer, drop a 'pick random' block into the y value•

Steps:

input.onButtonPressed(Button.A, () => {
 basic.clearScreen()
 for (let index = 0; index <= 4; index++) {

 07.Coordinate Grid and LEDs Page 113

 for (let index = 0; index <= 4; index++) {
 led.plot(index, Math.random(5))
 }
})

O B ’ ' ' L •

If the LED is currently on, the point x y block will return true. ○

If the LED is currently off, the point x y block will return false. ○

From the LED Toolbox drawer, drop a 'point x y' block into the 'if' condition to check the current on/off state of

a specific LED.

•

F , ’ Y N LED’ F B

Toolbox drawer, drag 2 'show icon' blocks into each of the 'then' and 'else' clauses. Select the check mark

for Yes, and the X icon for No.

•

F , ’ , B

to test for all coordinates on the micro:bit

•

Check the on/off state of an LED

Here is the complete program:

input.onButtonPressed(Button.A, () => {
 basic.clearScreen()
 for (let index = 0; index <= 4; index++) {
 led.plot(index, Math.random(5))
 }
})
input.onButtonPressed(Button.B, () => {
 if (led.point(0, 0)) {
 basic.showIcon(IconNames.Yes)
 } else {
 basic.showIcon(IconNames.No)
 }
})

RandomPatterns

 07.Coordinate Grid and LEDs Page 114

https://makecode.microbit.org/_DfTiHr7ipF0v

Download the program to your micro:bit•

Press button A to create a random pattern•

Press button B to check and display the status of the specific LED•

Try it out!

Brightness

A short exercise in using the brightness settings for the micro:bit LEDs. Important to note - the brightness level of

the micro:bit simulator LEDs will NOT appear to change! You must run your program on the actual micro:bit to

see the different brightness levels.

We will check on, and numerically display the brightness level with our program, so we can verify with the

simulator that it is working.

Pseudocode:

W ’ LEDs to the highest level on start and then use on button A pressed to

 B W ’ +B

pressed to check and display numerically the current brightness level.

Drag 3 'set brightness' blocks and 3 'brightness' blocks from the Led - More Toolbox drawer onto your

coding workspace

•

Place one 'set brightness' block in the 'on start' block•

Add a 'show icon' block after the 'set brightness' block so we will have an image to look at•

Steps:

 07.Coordinate Grid and LEDs Page 115

led.setBrightness(255)
basic.showIcon(IconNames.Heart)

From the Input Toolbox drawer, drag out 3 'on button pressed' blocks onto your coding workspace•

Leave one 'on button pressed' block with the default setting of A and change the second one to B and the

third one to A+B

•

Place one 'set brightness' block in the 'on button A' pressed block, and the other 'set brightness' block in

the 'on button B' pressed block

•

From the Math Toolbox drawer, drag out an addition block and a subtraction block•

Place the addition block within the 'set brightness' block in the 'on button B pressed' block•

Place the subtraction block within the 'set brightness' block in the 'on button A pressed' block•

Place a 'brightness' block on the left side of each math expression•

Change the default value of 0 on the right side of each math expression to 25•

input.onButtonPressed(Button.A, () => {
 led.setBrightness(led.brightness() - 25)
})
input.onButtonPressed(Button.B, () => {
 led.setBrightness(led.brightness() + 25)
})

O +B , ’ •

 ’ -display the image we used on start.•

 , ’

Here is the complete program:

input.onButtonPressed(Button.A, () => {

 07.Coordinate Grid and LEDs Page 116

input.onButtonPressed(Button.A, () => {
 led.setBrightness(led.brightness() - 25)
})
input.onButtonPressed(Button.B, () => {
 led.setBrightness(led.brightness() + 25)
})
input.onButtonPressed(Button.AB, () => {
 basic.clearScreen()
 basic.showNumber(led.brightness())
 basic.showIcon(IconNames.Heart)
})
led.setBrightness(255)
basic.showIcon(IconNames.Heart)

Brightness

What happens if adding 25 or subtracting 25 from the current brightness level would result in a sum or

difference outside of the 0 to 255 brightness range?

•

Try it out!

 07.Coordinate Grid and LEDs Page 117

https://makecode.microbit.org/21416-40583-32387-80373

Use what you now know about LEDs, coordinates, and brightness to create your own project: a screensaver, or a

game. You should find a way to use coordinates in your program. Even better, use variables to store and update

your coordinates.

Screensavers

One type of project is a screensaver. A long time ago, computers and televisions used cathode ray tube (CRT)

screens for displays. The glass screen of the display was coated on the back with phosphor, a substance that

glows when painted with electrons from an electron gun at the other end of the tube. When the same area of the

screen was painted (excited) over and over again by the stream of electrons, that part of the screen would

sometimes "freeze" with the same image, burned into the phosphor for good. This was called "burn-in".

Normally, if a show was running, or if someone was actively using the computer, the display changed often

enough that burn- ’

would run whenever the screen was idle. Today, nearly all computers and television sets use LCD displays, which

are not affected by burn-in. But you can still find a screen saver in nearly every computer's Settings panel, as an

opportunity to show off some neat graphics or animation.

Your task is to create:

A "screen saver" animation using the plot/unplot blocks. You can fill the screen line by line, pausing

between each one, or fill it with a random constellation of stars.

1)

OR

A game that uses sprites to manage the x and y coordinate values of the different objects.1)

Your project might use variables to store the values of sprites, which are special structures that contain an x and a

y coordinate together that describe the sprite's location as one LED on the screen.

Project Ideas

Firework Screensaver

This project uses a for loop with the plot/unplot blocks to create a symmetrical design on the screen. This student

used a subtraction operation to get a variable that decreases as the index variable in the loop increases.

Project: Screensaver or Game

 07.Coordinate Grid and LEDs Page 118

basic.forever(() => {
 for (let x = 0; x <= 4; x++) {
 led.plot(x, 0)
 led.plot(0, 4 - x)
 led.plot(4 - x, 4)
 led.plot(4, x)
 basic.pause(50)
 led.unplot(x, 0)
 led.unplot(4 - x, 4)
 led.unplot(0, 4 - x)
 led.unplot(4, x)
 basic.pause(50)
 }
})

Firework

 07.Coordinate Grid and LEDs Page 119

https://makecode.microbit.org/_hvDhiWLUbXEX

Cascade Screensaver

This example creates a diagonal cascading effect across the screen. Note the use of a variable (speed) to allow

you to easily change the speed of the animation by changing just one number value.

 07.Coordinate Grid and LEDs Page 120

let reverse = 0
let speed = 0
let inner = 0
let outer = 0
basic.forever(() => {
 for (let outer = 0; outer <= 4; outer++) {
 reverse = 4 - outer
 for (let inner = 0; inner <= 4; inner++) {
 led.plot(outer, reverse)
 basic.pause(speed)
 led.plot(reverse, outer)
 basic.pause(speed)
 led.plot(reverse - inner, reverse)
 basic.pause(speed)
 led.plot(reverse, reverse - inner)
 basic.pause(speed)
 }
 }
 for (let outer = 0; outer <= 4; outer++) {
 reverse = 4 - outer
 for (let inner = 0; inner <= 4; inner++) {
 led.unplot(outer, reverse)
 basic.pause(speed)
 led.unplot(reverse, outer)
 basic.pause(speed)
 led.unplot(reverse - inner, reverse)
 basic.pause(speed)
 led.unplot(reverse, reverse - inner)
 basic.pause(speed)
 }
 }
})
speed = 10

Cascade

 07.Coordinate Grid and LEDs Page 121

https://makecode.microbit.org/42063-79251-60139-66053

Dodge Ball Game

This is a Dodge Ball game that uses one sprite (dodger) to try to avoid another sprite (ball). You use the A and B

buttons to move the dodger to avoid the balls that are falling from the top of the screen.

Here is the complete Dodge Ball program.

 07.Coordinate Grid and LEDs Page 122

let dodger: game.LedSprite = null
let ball: game.LedSprite = null
basic.forever(() => {
 if (dodger.isTouching(ball)) {
 game.gameOver()
 } else if (ball.get(LedSpriteProperty.Y) < 4) {
 ball.change(LedSpriteProperty.Y, 1)
 basic.pause(250)
 } else {
 game.addScore(1)
 ball.set(LedSpriteProperty.Y, 0)
 ball.set(LedSpriteProperty.X, Math.random(5))
 }
})
input.onButtonPressed(Button.A, () => {
 if (dodger.get(LedSpriteProperty.X) > 0) {
 dodger.change(LedSpriteProperty.X, -1)
 }
})
input.onButtonPressed(Button.B, () => {
 if (dodger.get(LedSpriteProperty.X) < 4) {
 dodger.change(LedSpriteProperty.X, 1)

 07.Coordinate Grid and LEDs Page 123

 dodger.change(LedSpriteProperty.X, 1)
 }
})
ball = game.createSprite(Math.random(5), 0)
dodger = game.createSprite(2, 4)
game.setScore(0)

DodgeBall

Reflection

Did you do a screensaver? A game? Something different? How did you decide?•

If you did a game, what is the object of the game?•

How does your project use coordinates?•

Describe something in your project that you are proud of.•

Describe a difficult point in the process of designing this program, and explain how you resolved it.•

What feedback did your beta testers give you? How did that help you improve your design?•

Have students write a reflection of about 150–300 words, addressing the following points:

Assessment

4 3 2 1

Coordinates

and LEDs

Uses at least 3 of the

different kinds of plot/

unplot/toggle/point x y

blocks in a meaningful

way.

Uses variables to update

coordinates.

At least 2 of the

different kinds

of plot/unplot/

toggle/point x y blocks

in a meaningful way

At least 1 of the

different kinds

of plot/unplot/

toggle/point x y blocks

in a meaningful way

No plot/unplot/

toggle/point x y

blocks are

implemented.

 07.Coordinate Grid and LEDs Page 124

https://makecode.microbit.org/_55i1oE4f7dWf

coordinates.

Micro:bit

program

Micro:bit program:

Uses plotted LEDs in a

way that is integral to the

program,

•

Compiles and runs as

intended,

•

Meaningful comments in

code

•

Micro:bit program lacks

1 of the required

elements

Micro:bit program lacks

2 of the required

elements

Micro:bit

program lacks all

of the required

elements

Collaboration

reflection

Reflection piece includes:

Brainstorming ideas•

Construction•

Programming•

Beta testing•

Reflection piece lacks 1

of the required

elements.

Reflection piece lacks 2

of the required

elements.

Reflection piece

lacks 3 of the

required

elements.

 07.Coordinate Grid and LEDs Page 125

CSTA K-12 Computer Science Standards

CL.L2-03 Collaborate with peers, experts, and others using collaborative practices such as

pair programming, working in project teams, and participating in group active learning

activities

•

CT.L1:6-01 Understand and use the basic steps in algorithmic problem-solving•

CT.L1:6-02 Develop a simple understanding of an algorithm using computer-free exercises•

CPP.L1:6-05 Construct a program as a set of step-by-step instructions to be acted out•

2-A-5-7 Create variables that represent different types of data and manipulate their values.•

CT.L2-14 Examine connections between elements of mathematics and computer science

including binary numbers, logic, sets and functions.

•

Standards

 07.Coordinate Grid and LEDs Page 126

https://www.csteachers.org/?page=CSTA_Standards

This lesson introduces the use of the boolean data type to control the flow of a program, keep

track of state, and to include or exclude certain conditions.

Shakespeare knew Booleans (quote from Hamlet)

Lesson Objectives

Understand what booleans and boolean operators are, and why and when to use them in a

program.

•

Learn how to create a boolean, set the boolean to an initial value, and change the value of

the boolean within a micro:bit program.

•

Learn how to use the random true or false block. •

Apply the above knowledge and skills to create a unique program that uses booleans and

boolean operators as an integral part of the program.

•

 …

Introduction: Booleans in daily life•

Unplugged Activity: Two Heads are Better Than One•

Micro:bit Activity: Double Coin Flipper•

Project: Boolean•

Assessment: Rubric •

Standards: Listed•

Lesson Plan Structure

String (for text) •

Integer (for numbers)•

There are several different data types used in computer programming. We have already used

two of these types:

Boolean is another type of data. A boolean data type has only two values: true or false.

In true binary fashion, these two values can be represented by the numbers 1 = true, and 0 =

false.

Booleans

 08.Booleans Page 127

Booleans are useful in programming for decision-making, often deciding when certain functions

and parts of programs should start or stop running and are also used in database searches.

Ask the students to think of things in daily life that have only two values or states. The status is

always one value or the other value.

Lights: On or Off•

Time: AM or PM•

You!: Asleep or Awake•

Weather: Raining or Not Raining•

Math: Equal to or Not Equal to•

Game: Truth or Dare•

Soda: Coke or Pepsi•

At the store: Paper or Plastic? Cash or Credit? Chip or Swipe?•

Examples of Booleans in daily life

Note:

Arguments can be made that some of these can have more than two values.

For example: At the store, you may have brought your own reusable bags or pay by check.

Let the students discuss these to help them hone in on which examples best represent Booleans.

A student might argue that a dimmer switch on a light or the brightness value on the micro:bit

LEDs allow the lights to be in a state between on and off. One could respond that you can

 ‘ ’

electricity at all (off).

If a certain condition is true, do this, otherwise (if condition is false), do something else.•

While a certain condition is true, do this•

In programming, if you have worked with conditionals or loops, you have already worked with

this type of logic:

Boolean Operators: AND, OR, and NOT

To make working with Booleans useful for solving more complex decisions and searches, we can

connect two or more Booleans into one decision statement. To do this, we use what are known

as Boolean operators. The three most common and the ones we will use with the micro:bit are

And, Or, and Not.

If condition A is true AND condition B is true•

If condition A is true OR condition B is true•

While event A has NOT happened•

These operators can be used in conditionals and loops, like so:

L ’

AND

(Condition A AND Condition B)

For this expression to evaluate as true, both conditions in the expression need to be true.

So, if both Condition A AND Condition B are true, the expression will evaluate as or return true.

 08.Booleans Page 128

So, if both Condition A AND Condition B are true, the expression will evaluate as or return true.

OR

(Condition A OR Condition B)

For this expression to evaluate as true, only one of the conditions in the expression needs to be

true.

If Condition A is true, the expression will return true regardless of whether Condition B is true or

false.

If Condition B is true, the expression will return true regardless of whether Condition A is true or

false.

NOT

NOT can be used when checking that a condition is false (or not true).

(NOT Condition A and Condition B) evaluates as true only if Condition A is false and

Condition B is true.

•

(Condition A and NOT Condition B) evaluates as true only if Condition A is true and

Condition B is false.

•

(NOT Condition A and NOT Condition B) evaluates as true only if both Condition A and

Condition B are true.

•

For example:

NOT is also useful when using a loop. For example, you can use a NOT to check

W NO , …

N ‘F ’ q ‘NO ’

Sidebar material

Image credit: Wikimedia Commons

George Boole (/ˈbuːl/; 2 November 1815 – 8 December 1864) was an English mathematician,

educator, philosopher and logician. He worked in the fields of differential equations and

algebraic logic, and is best known as the au`thor of The Laws of Thought (1854) which contains

Boolean algebra.

 08.Booleans Page 129

Materials: A penny for each student, paper and pencils

Most students have used a penny to decide something. Ask for some examples.

Who goes first in a game, to break a tie, to decide which activity to do…

A simple penny is the most common binary decision making tool ever!

When you flip a coin to decide something there are only two possible outcomes, heads or tails.

When you flip a coin the outcome is random.

W ’ ? Students may bring up issues of trust and fairness. Who

gets to flip the coin? Who gets to ‘call’ it? What if it’s a ‘faulty’ coin?

H ’ …

In a double coin toss, both people have a coin and they flip the coins at the same time.

Working in pairs, have the students make a table or list of the possible outcomes if each student

flipped a coin at the same time.

Coin A Coin B

Heads Heads

Heads Tails

Tails Heads

Tails Tails

Example:

For 2 outcomes, the result is the same for both coins, both heads or both tails. •

For the other 2 outcomes, the result for each coin is different, heads/tails and tails/heads.•

There are 4 possible outcomes.

So, if 2 coins are flipped, the chance that the outcomes will be the same (HH/TT) is equal to the

chance that the outcomes will be different (HT/TH). Both outcomes, coins the same/coins are

different have a 2 in 4 or 50% chance of occurring.

Therefore, if Person A wins each time the outcomes are the same and Person B wins each time

the outcomes are different, both have an equal chance of winning each double coin flip. With

Unplugged: Two Heads are Better Than One

 08.Booleans Page 130

the outcomes are different, both have an equal chance of winning each double coin flip. With

 , ’ , , I ’

to heads, she would win if Person B also flipped heads, but lose if Person B flipped tails.

Students will usually see that this is a fair system.

Let the students experiment with this.

Have students flip their coins together, keeping track of the outcomes, perhaps by adding

another column to their table.

Coin A Coin B Totals

Heads Heads

Heads Tails

Tails Heads

Tails Tails

Example:

Just for fun, have them play to a certain total number of rounds.

So, what does this have to do Boolean variables and operators?

Think about how you would code a program a double coin flipper.

How would you represent each of the 4 different possible double coin flip outcomes?

L ’ !

We can create a Boolean variable to represent whether an outcome is heads or tails.

Heads = True •

Tails = False•

We can make

Note: Tails = False can also be thought of as Tails = not true.

Have the students copy their Heads/Tails table of possible outcomes, but label the columns

" H " " B H " ‘H ’ ‘ ’ ‘ ’

‘F ’ In the study of logic, this is known as a truth table.

W ’ ,

of each outcome.

Coin A Heads Coin B Heads Results

True True If Coin A is true AND Coin B is true, add one to Player A score

True False If Coin A is true AND Coin B is false, add one to Player B score

False True If Coin A is false AND Coin B is true, add one to Player B score

False False If Coin A is false AND Coin B is false, add one to Player A score

Can we make this code more efficient? Can we combine any of these lines?

Try using an OR to combine both conditions in which Player A scores a point.

 08.Booleans Page 131

Try using an OR to combine both conditions in which Player A scores a point.

Do the same for both conditions in which Player B scores a point.

Give the students a chance to work this out on their own.

If (Coin A is true AND Coin B is true) OR (Coin A is false AND Coin B is false), add one to

Player A score.

•

If (Coin A is true AND Coin B is false) OR (Coin A is false AND Coin B is true), add one to

Player B score.

•

Combining the conditions in which each player wins, gives us:

Note: Just as you do for math expressions with multiple operators, use parentheses to make it

clear how the conditions and statements are grouped together.

The students are by now familiar with the MakeCode blocks. As they think through their

algorithms, they may even have started to visualize the blocks they might use. Visualizing the

blocks as they pseudocode can help them with the logical steps of their program. It can also

help them to visualize and recognize the big picture of their code as well as the details.

Using blocks to start coding these two conditionals as currently written, might look like this:

Then add one to Player A score.

Then add one to Player B score.

 , ’ I

 L ’

Booleans and Simplifying Code

A boolean can have only one of two values: True or False. Conditionals like 'if...then' check

whether a condition is true. Notice that the default condition for the 'if...then' blocks is true. In

other words, the 'if...then' blocks will check to see whether whatever condition you place there is

true.

 ‘I H ’ ‘I H = ’ W

simplify our code.

Instead of:

 08.Booleans Page 132

we can code:

 , ‘I H ’ ‘I H = F ’,

instead of

we can code

So now we have

Can we simplify it even more?

For this particular program, since we are checking to see if the conditions CoinAHeads and

CoinBHeads are the same, whether both true or both false, we can use a logic equals block to

simplify our code to

Then add one to Player A score.

What about our other big block of code for the conditions for a Player B win?

We could simplify that to

Then add one to Player B score.

 08.Booleans Page 133

W ’ ! q q ,

simply do this:

Random Functions

We use a coin flip to decide things because the result is random, meaning the result happens

without any conscious decision or direction. We use dice and game spinners for the same

reason. The results are not predetermined or directed in any way.

So, how do we get a random flip in code? Most computer programming languages have a built

in function that will select a random number given a range of values. Microsoft MakeCode has a

block for this. And it also has a block for getting a random true or false value.

We will call on this built in function to get a random true or false value for each flip of a coin in

the next Activity.

Use the random function to get a true/false value for Coin A.1.

Use the random function to get a true/false value for Coin A.2.

Compare the current values of Coin A and Coin B.3.

I B , ’

score.

4.

Otherwise, the current true/false values of Coin A and Coin B must be different, so add a

 B’

5.

When players are done with their double coin flipping, show the final scores for each

player.

6.

Our basic pseudocode for our Double Coin Flipper could look like this:

 08.Booleans Page 134

Guide the students to create a program using Boolean variables and operators.

W ’

F , ’

CoinAHeads•

CoinBHeads•

PlayerAScore•

PlayerBScore•

Make a variable for each of the following:

Now we need to initialize the variable values.

Put a 'set' variable block for each of these 4 variables inside the 'on start' block.

The initial value of a variable is the value the variable will hold each time the program starts.

 z “” •

a number variable is initialized to 0•

 B z ‘ ’•

By default:

I z z B ‘ ’

You can find the false blocks under the Logic menu.

Activity: Double Coin Flipper

 08.Booleans Page 135

let CoinAHeads = false
let CoinBHeads = false
let PlayerAScore = 0
let PlayerBScore = 0
basic.showLeds(`
 . # . . .
 # # # . .
 . # . # .
 . . # # #
 . . . # .
 `)

Notice that we also added an image for the start screen, so the user knows the program has started and is ready.

Does the image look like two coins?

Random coin flips

When the player shakes the micro:bit, we will code the micro:bit to give each of our Boolean variables a random

true/false value.

From the Input Toolbox drawer, drag an 'on shake' block to the coding workspace•

From the Variables Toolbox drawer, drag 2 'set' variable blocks to the coding workspace•

Drag the 2 'set' blocks into the 'on shake' block•

 ‘ ’ H BH •

From the Math Toolbox drawer, drag 2 'pick random true or false' blocks to the coding workspace•

Hover over this 'pick random' block and note that its pop-up description mentions coin flipping!•

 08.Booleans Page 136

Attach these 'pick random' blocks to the 'set' variable blocks in the 'on shake' block•

let CoinBHeads = false
let CoinAHeads = false
input.onGesture(Gesture.Shake, () => {
 CoinAHeads = Math.randomBoolean()
 CoinBHeads = Math.randomBoolean()
})

Now that the virtual CoinA and CoinB have been virtually flipped, we need to compare the outcomes to see if

they are the same or different.

From the Logic Toolbox drawer, drag an 'if...then...else' block to the coding workspace •

Drag the 'if...then...else' block into the 'on shake' block under the 'set' variable blocks•

input.onGesture(Gesture.Shake, () => {
 CoinAHeads = Math.randomBoolean()
 CoinBHeads = Math.randomBoolean()
 if (true) {

 08.Booleans Page 137

 if (true) {

 } else {

 }
})

Compare the current values of Coin A and Coin B.1.

I B , ’ 2.

O , B , B’ 3.

Now our logic block is ready for the next steps of our pseudocode.

Because we were able to visualize our blocks as we wrote our pseudocode, we already know what blocks we will

use and also know that we have simplified our code as much as possible!

We can now simply add this to our current code•

And provide user feedback by adding some visuals•

 , ’ ’

 08.Booleans Page 138

 , ’ ’

Here is the complete program for our Double Coin Flipper.

let PlayerBScore = 0
let PlayerAScore = 0
let CoinBHeads = false
let CoinAHeads = false
input.onGesture(Gesture.Shake, () => {
 CoinAHeads = Math.randomBoolean()
 CoinBHeads = Math.randomBoolean()
 if (CoinAHeads == CoinBHeads) {
 basic.showLeds(`
 . . # . .
 . # . # .
 . # # # .

 08.Booleans Page 139

 . # # # .
 . # . # .
 . # . # .
 `)
 basic.pause(100)
 PlayerAScore += 1
 } else {
 basic.showLeds(`
 . # # . .
 . # . # .
 . # # . .
 . # . # .
 . # # . .
 `)
 basic.pause(100)
 PlayerBScore += 1
 }
 basic.showLeds(`
 . # . . .
 # # # . .
 . # . # .
 . . # # #
 . . . # .
 `)
})
input.onButtonPressed(Button.A, () => {
})
CoinAHeads = false
CoinBHeads = false
PlayerAScore = 0
PlayerBScore = 0
basic.showLeds(`
 . # . . .
 # # # . .
 . # . # .
 . . # # #
 . . . # .
 `)

DoubleCoinFlipper

 08.Booleans Page 140

https://makecode.microbit.org/91362-05275-53325-39940

Try it out!

Have the students play a few more rounds of the Double Coin Flip using their new Micro:bit Double Coin Flipper!

Boolean operator NOT in a Loop

Do you remember this code from our micro:bit Alarm?

Can you read this code and tell what it does?

If the micro:bit is shaken, the micro:bit will play two tones twice and keep repeating this action until button A is

pressed. So, after shaking, as long as ‘is button A pressed?’ is false, the two tone alarm will continue to repeat.

 08.Booleans Page 141

This is an assignment for students to come up with a micro:bit program that uses Boolean variables, Boolean

operators, and possibly the random function.

Input

Remind the students of all the different inputs available to them through the micro:bit.

Project Ideas

Sunscreen Monitor

When you shake the micro:bit, it reports the current temperature in degrees Fahrenheit. Button B measures the

light level and if it is above 70 degrees AND very bright, it will display a sun icon. If it is above 70 degrees and less

bright, it will display a cloudy symbol. If it is dark, it will display a nighttime icon.

micro:bit Sunscreen Monitor

Project: Boolean

 08.Booleans Page 142

https://youtu.be/VmD-dcZZQFc

Sunscreen

Button A displays an animation to tell you whether or not you should use sunscreen (on sunny or cloudy days but

not at night or indoors.)

Make a holder that can hold the micro:bit and a bottle of sunscreen.

This example uses boolean operations because both light level AND temperature must be high in order to trigger

the sun icon:

 08.Booleans Page 143

https://makecode.microbit.org/_HdsUXd2Rbev5

Two-Player Game

Create a game in which two players take turns on the same micro:bit. You can use a boolean variable called

PlayerATurn to keep track of whose turn it is.

Board Game: Use boolean variables and random values as part of a board game (or improve your Board Game

from the Variables lesson). Make the board and pieces and a holder for the micro:bit. Try modding a current board

game.

Board Game with Arrows

Board Game Arrow

 08.Booleans Page 144

https://makecode.microbit.org/98929-72942-97599-27426

This is an example of a board game in which the micro:bit displays an arrow pointing in a random direction. The

paper legend indicates different actions the player must take.

Here is a portion of the board game's code. A boolean variable is used to determine whose turn it is. If player1Turn

is false, then it's player 2's turn. A random number is generated to show the arrow seventy-five percent of the time

(for values of 0, 1, or 2).

Assessment

4 3 2 1

Boolean More than 2 Boolean

variables are

implemented in a

meaningful way

At least 2 Boolean

variable is

implemented in a

meaningful way

At least 1 Boolean

variable is

implemented in a

meaningful way

No Boolean variables

are implemented.

Micro:bit

program

Micro:bit program:

Uses Boolean variables

in a way that is integral

to the program

•

Uses a random function

in a way that is integral

to the program

•

Micro:bit program

lacks 1 of the required

elements

Micro:bit program

lacks 2 of the required

elements

Micro:bit program

lacks 3 or more of the

required elements

 08.Booleans Page 145

to the program

Compiles and runs as

intended

•

Meaningful comments in

code

•

Collaboration

reflection

Reflection piece

includes:

Brainstorming ideas•

Construction•

Programming•

Beta testing•

Reflection piece lacks 1

of the required

elements.

Reflection piece lacks 2

of the required

elements.

Reflection piece

lacks 3 of the required

elements.

 08.Booleans Page 146

CSTA K-12 Computer Science Standards

CL.L2-03 Collaborate with peers, experts, and others using collaborative practices such as

pair programming, working in project teams, and participating in group active learning

activities

•

CT.L1:6-01 Understand and use the basic steps in algorithmic problem-solving•

CT.L1:6-02 Develop a simple understanding of an algorithm using computer-free exercises•

CPP.L1:6-05 Construct a program as a set of step-by-step instructions to be acted out•

2-A-5-7 Create variables that represent different types of data and manipulate their values.•

Standards

 08.Booleans Page 147

https://www.csteachers.org/?page=CSTA_Standards

This lesson presents the concept of binary digits and base-2 notation. Students will learn how data is stored

digitally and how it can be read and accessed.

Lesson Objectives

Understand what a bit and byte are and how they relate to computers and the way information is

processed and stored.

•

Learn to count in Base-2 (binary) and translate numbers from Base-10 (decimal) to binary and decimal.•

Apply the above knowledge and skills to create a unique program that uses binary counting as an

integral part of the program.

•

 …

Introduction: Bits and Bytes•

Unplugged Activity: Binary Vending Machine•

Micro:bit Activity: Binary Transmogrifier•

Project: Make a Binary Cash Register•

Assessment: Rubric •

Standards: Listed•

Lesson Plan Structure

Introduction

Most everyone who uses a computer has heard the terms, kilobyte (kB), Megabyte (MB), Gigabyte (GB) and

even Terabyte (TB), usually when referring to the size of computer files and hard drives as well as download

speeds. Bandwidth or connection rates are measured in bits/second. But what is a bit and what is a byte and

what do they have to do with computers?

Picture a basic room light. The light is either on or it is off. You control the current state of the light by

flipping a switch that has only two settings, down (light off) and up (light on). The earliest computers used a

series of mechanical switches to control the flow of electricity through their circuits, turning each one on or

off. The on/off states of the circuits was used to represent and even store information. The smallest unit of

information, representing the state of one switch, is known as a bit.

A bit is a binary digit and has only two possible values, zero or one. The value of the bit represents the

current state of a single switch. If the switch is off, then the bit has the value zero. If the switch is on, then the

bit has the value one.

A bit can only represent two different values, zero or one. To represent larger pieces of information, bits are

strung together in sequences of 8 called bytes.

A byte is a sequence of binary digits made up of 8 bits.

A byte can represent any value from 00000000 through 11111111, for a total of 256 different possible

values. Each digit in a byte can be thought of as representing an individual switch that is either off (zero) or

on (one).

Modern computers rely on transistors, which pack millions of tiny switches into a chip smaller than your

thumb, but information is still represented in essentially the same way: as a series of ones and zeros. By

Binary

 09.Bits Bytes Binary Page 148

thumb, but information is still represented in essentially the same way: as a series of ones and zeros. By

using binary, computers can represent information simply and efficiently using a system that is very

effectively modeled in digital circuitry.

Binary numbers on a terminal monitor

A Bit is a binary digit with two possible values, zero or one•

A Byte is a sequence of 8 bits and has 256 possible values from 00000000 through 11111111•

A kilobyte (kB) is 1,024 bytes or 2^10 bytes•

A Megabyte (MB) is 1,048, 576 bytes or 2^20 bytes•

A Gigabyte (GB) is 1,073,741,824 bytes or 2^30 bytes•

A Terabyte (TB) is 1,099,511,627,776 bytes or 2^40 bytes•

Review

The ones and zeros of bits and bytes can be used to represent letters, numbers, and even different

keys on a computer keyboard.

•

 B z ‘ ’

 ‘ ’

•

Notes

 09.Bits Bytes Binary Page 149

In this activity, students will explore the concept of binary numbers by experimenting with a very

odd vending machine that only accepts Base- ’ ! I ,

students will become familiar with an alternate numbering system, in this case binary (Base-2).

Students will learn how binary relates to decimal, and will be able to convert between the two

systems.

Paper•

Pencil•

 ‘ ’ - these could be checkers/chess pieces, cardboard rounds, or even post-it

notes

•

Vending machine visual (optional) •

Materials

Pre-activity preparation

G ‘ ’ , , , 8, ,

Plastic white poker chips work well as coins. You can write the denominations onto one side of

the coins with a whiteboard marker. You can also use small index cards or paper squares. Make

sure to leave one side of each coin blank.

Amount: One set of coins (with one coin of each of the first four denominations in it) for each

student or each pair of students.

Hold onto the 16 and 32 unit coins for later.

Tip

If you have time, create on a poster board, on the whiteboard, or on paper as a handout, a big

rectangle representing a vending machine. Draw in different items for purchase that would

appeal to the students. Have the different items priced differently from 1 unit to 15 units. This is

particularly good to have for younger and more visually oriented students.

You can also just make a very simple vending machine diagram like the one below:

Unplugged: Binary Vending machine

 09.Bits Bytes Binary Page 150

Introduction:

Have any of them bought anything in the last 24 hours? Usually they have bought a snack

or perhaps lunch

•

Did any of them use cash? •

What bills or coins did they use? •

What are the core denominations of money in the United States?•

Ask the students the following questions to spark discussion:

1 penny•

1 dime = 10 pennies•

1 one dollar bill = 10 dimes (or 100 pennies)•

1 ten dollar bill = 10 one dollar bills•

1 hundred dollar bill = 10 ten dollar bills•

Lead the students to realize that our core monetary denominations, like our number system are

based on ten.

Our money system is based on our number system, the decimal system. The deci- prefix means

‘ ’

For example: The amount eleven is written in decimal notation as 11.

 ‘ ’ ‘ ’

 ‘ ’

The next numeral one represents an amount that is one tenth the amount of the place value to

its left; in this case, one tenth of ten, or one.

But what is it like to use a different monetary system? A monetary system that has a base other

than ten?

 09.Bits Bytes Binary Page 151

than ten?

Give a set of the coins you prepared earlier to each student or pair of students•

Remember to hold onto the 16-unit and 32-unit coins for now•

There is a vending machine that sells items of all prices○

However, the machine cannot give change○

Therefore, you must pay for everything in exact amounts ○

You have one of each coin: 1, 2, 4, 8.○

Present the following scenario: •

Process

What is the price of the least expensive item you can buy? (1 unit)•

What is the price of the most expensive item you can buy? (15 units) •

What else can you buy? What coin(s) would you use to do this?•

W , ’ ? •

Questions

Here is where students will start to figure out the different combined sums of different coins.

Y , , “I ’

 , ’ ?” N -unit item with 8

+ 2 + 1.

You can now have the students write down how they could pay, what coin(s) could they use to

purchase each of the items priced 1 unit through 15 units with the coins they have OR have a

whole class discussion with you keeping track of their methods of payment on the whiteboard.

You can make every amount between 1 unit and 15 units with the 4 coins in their set•

There is only one way to make each of those amounts.•

There will soon be a general agreement among the students that:

Have students line up the coins in their set from greatest to least denomination, left to right.

What do you notice about the denominations as they increase from right to left? Each

amount is double (or times 2 or twice) the denomination before it (to its right)

•

If we added one more coin to your set of coins that is greater than the 8 unit coin, what is

the next logical coin denomination? 16. Why? Because 16 is ‘2 times’ greater than 8

•

Questions

Hand out the 16 unit coins, one to each student or pair of students.

What is the new maximum price you could pay for an item? 31•

What combinations of coins can you use to pay for an item priced from 16 units to this

new maximum price?

•

Questions

Once again, you can now have the students write down how they could pay, what coin(s) could

they use to purchase each of the items priced 16 units through the new maximum price with the

coins they have, OR have a whole class discussion with you keeping track of their methods of

payment on the whiteboard.

 09.Bits Bytes Binary Page 152

payment on the whiteboard.

You can make every amount between 16 units and the new maximum with the 5 coins now

in their set.

•

There is only one way to make each of those amounts.•

Again, there will soon be a general agreement among the students that:

If we added one more coin to your set of coins that is greater than the 16 unit coin, what is

the next logical coin denomination? 32. Why? Because 32 is ‘2 times’ greater than 16.

•

Questions

Hand out the 32 unit coins, one to each student or pair of students.

What is the new maximum price you could pay for an item? 63•

What combinations of coins can you use to pay for an item priced from 32 units to this

new maximum price?

•

From coins to binary notation - the number 45

Questions

Once students are comfortable making combinations of numbers, encourage them to use ones

and zeroes to represent the numbers instead. This number system uses the number 2 as its base

(each place is two times the one before it.) It is called the Base-2 system, or binary system. The

number system we are normally familiar with is the Base-10 system, or decimal system (each

place is ten times the one before it.)

With their coins in a line in descending order from right to left on a piece of paper, ask students

 09.Bits Bytes Binary Page 153

With their coins in a line in descending order from right to left on a piece of paper, ask students

to represent a given number by keeping face up the coins they would use to make this amount

and flipping over or putting face down the coins not used.

For example: Ask them to represent the number 45. See image above.

They should have the 32, 8, 4, and 1 coins face up and the 16 and 2 coins face down.

Ask the students to place a numeral 1 above the coins that are face up and a numeral zero over

the coins that are face down.

The ones and zeros they just drew are the binary number version of the amount represented by

the flipped-up coins. For the example: 45 in Base-10 = 101101 in Base-2

Practice translating numbers from Base-10 to Base-2

The students can now use this same method to translate other numbers from Base-10 to Base-2.

22 (1 0 1 1 0)

37 (1 0 0 1 0 1)

Examples:

Practice translating numbers from Base-2 to Base-10

Start with all the coins face up in a line from greatest to least denomination from left to

right.

•

Write the ones and zeros representing the binary number being translated above the

coins.

•

Flip to face down any coin with a zero above it.•

Add up the remaining face up coins.•

Next, have the students use the above method in reverse to translate numbers from Base-2 to

Base-10.

0 1 0 1 0 (10)

1 1 0 1 1 0 (54)

Examples:

 09.Bits Bytes Binary Page 154

Guide the students through building a binary transmogrifier (converter) that converts between

binary (base-2) and decimal (base-10) numbers. Let them figure out a pattern that will allow

them to do the conversion on the fly.

Calvin & Hobbes

Tell the students that they will be building a binary transmogrifier with the micro:bit.

The user will be able to use the buttons to enter binary 0s and 1s and will be able to press A+B

at any time to display the decimal equivalent of the number that has been entered.

Create the Variables

Students will need to create a number variable to hold the running decimal total.

They should also create a string variable to hold the current binary number.

From the Variables menu, make and name these two variables: decimal, binary.•

Activity: Binary Transmogrifier

 09.Bits Bytes Binary Page 155

http://www.calvinandhobbes.com/

Initialize the Variables

decimal = 0•

binary = "" (empty string)•

When the program starts up, you should initialize your variables to starting values.

This also tells the micro:bit what type of variable it is. Use the empty string value found in the

Text Toolbox drawer, under the Advanced menu.

let binary = ""
let decimal = 0

B “ “

variable: a literal string of characters. This is important because you will be adding to this string

character by character.

Transmogrify Me!

We are ready to start entering numbers. Remember that binary numbers are calculated based

 “ ” , O

to calculate the decimal value is to wait until the user presses A+B, and then calculate the entire

number based on the value of the string.

H , “ ”,

say, every time the user presses a 1 or a 0, calculate the current decimal value of that string so

you only have to deal with one 0 or 1 at a time.

What’s the Pattern?

 09.Bits Bytes Binary Page 156

What’s the Pattern?

This is a table of the first fourteen binary numbers and their decimal equivalents. Your goal is to

use this table to figure out how to calculate a new correct decimal value based on whether a

user enters a 0, or a 1 as the next number in the string.

Binary Decimal Binary Decimal

1 1 1000 8

10 2 1001 9

11 3 1010 10

100 4 1011 11

101 5 1100 12

110 6 1101 13

111 7 1110 14

For example, imagine you are the micro:bit. If the first number the human enters is a 1, you

automatically know the new decimal value is a 1. If the second number that is entered is a 0,

then your decimal value goes from 1 to 2. However, if the second number is also a 1, then your

new decimal value goes from 1 to 3.

 , , L ’

decimal value of binary 10 is 2. If the third number entered is a 0, then your new decimal value

goes from 2 to 4. If the third number entered is a 1, then your new decimal value goes from 2 to

5.

If, on the other hand, you have 11 in your binary string, then your decimal value is 3. If the third

number entered is a 0, then your new decimal value goes from 3 to 6. If the third number

entered is a 1, then your new decimal value goes from 3 to 7.

See if you can spot a pattern that will help you figure out, for any given decimal value, what the

new decimal value should be if the user enters a 0, or if the user enters a 1.

 09.Bits Bytes Binary Page 157

Pseudocode

Recall from our Algorithms lesson that it is a good idea to write out your algorithm in plain

English, before you start coding in MakeCode. This is called pseudocode. The Input for this

program will be the buttons. Try to write out what should happen when each of the buttons is

pressed.

H Y ’

 “ ” 1.

Show the current value of the binary string.2.

Update the decimal value with the total.3.

When Button A is pressed:

 “ ” 1.

Show the current value of the binary string.2.

Update the decimal value with the total.3.

When Button B is pressed:

Show the current value of the decimal string.1.

When Buttons A+B are pressed:

F I , ‘ ’

coding workspace

•

L ' ’ -down menus in the other 2 blocks to

 ‘B’, ‘ +B’

•

Coding Steps

 09.Bits Bytes Binary Page 158

B “ ” O “ ”

called binary.

•

From the Text Toolbox drawer (under the Advanced menu), drag the 'join' block to your

programming workspace

•

Next, use the 'set' variable block to assign the value of the 'binary' variable to the 'join'

block

•

J ' ' “ ” ' '

block

•

And show the binary value on the screen so that when users press a button they can see

the entire binary string

•

L ’

Whenever someone enters a 0, the new decimal value is twice the previous value. ○

If someone enters a 1, the new decimal value is twice the previous value, plus 1.○

Finally, you will need to update the current decimal value with the value of the entire

binary string. This is pretty straightforward if you have been keeping track of the decimal

value every time someone presses a button. The pattern is as follows: (spoiler alert!)

•

For Button A, you will need to use the multiplication Math block and your binary variable

block to create the proper formula. You will need to put that formula inside another Math

addition block in order to add one to the result.

•

Y B B , “ ”

 09.Bits Bytes Binary Page 159

Y B B , “ ”

and you are just multiplying the decimal variable by 2.

•

Your Button A+B algorithm just uses a Show block to show the value of the decimal

variable.

•

Here is the completed program.

let binary = ""
let decimal = 0
input.onButtonPressed(Button.A, () => {
 binary = binary + "1"
 basic.showString(binary)
 decimal = decimal * 2 + 1
})
input.onButtonPressed(Button.B, () => {
 binary = binary + "0"
 basic.showString(binary)
 decimal = decimal * 2
})
input.onButtonPressed(Button.AB, () => {
 basic.showNumber(decimal)
})
decimal = 0

 09.Bits Bytes Binary Page 160

decimal = 0
binary = ""

Transmogrifier

Try it out!

Have someone else try your program out. Then think about how the program might be

improved.

Add a way to clear the binary and decimal values so you can start over.•

Add a way to erase the previous value.•

Create a decimal-binary converter that allows you enter a decimal value and see the binary

equivalent when you press A+B.

•

Here are some additional modifications you might try:

 09.Bits Bytes Binary Page 161

https://makecode.microbit.org/07576-23150-47531-98137

The unplugged activity uses a vending machine as a model for creating different combinations

of binary place values. We found that for n coins, there is one and only one way to make every

number between 0 and 2^n-1.

For this project, students should invent a paper and cardboard version of the binary counter,

then program it to display the decimal value of those numbers.

Cardboard or heavy paper•

Copper tape - https://www.adafruit.com/product/1128,

https://www.sparkfun.com/products/10561

•

3 quarters or other heavy coins•

Scissors•

Duct tape•

Materials

Binary micro:bit Cash Register

Tips

This is one possible design for a binary cash register. We used coins and copper tape on a piece

 N , “ ” “ ” ,

flipped so it lays flat across both pieces of copper tape, completing the circuit so the micro:bit

can detect that that pin has been activated, and calculates and displays the decimal value of the

binary number that is indicated by the coins.

Copper tape is a thin, flexible strip of copper with an adhesive back. You can sometimes find

copper tape at the hardware, sold as slug tape, to keep slugs out of your garden. Usually,

Project: Make a Binary Cash Register

 09.Bits Bytes Binary Page 162

https://www.adafruit.com/product/1128
https://www.sparkfun.com/products/10561

copper tape at the hardware, sold as slug tape, to keep slugs out of your garden. Usually,

copper tape can conduct electricity even through the sticky side but if you are sticking one piece

of copper tape to another, be sure to go over the connection with your fingernail, pressing it

down firmly.

Because the micro:bit only has three pins, this binary register is limited to three place values.

Students might use variables to represent each of the three place values, or they can simply

keep a running total by adding the appropriate amount when each of the three pins is pressed.

You can stick the micro:bit into place using some sticky tape, or you can create an actual holder.

The copper tape connections are delicate though, so be careful when plugging and unplugging

the power cable from the board.

An implementation of the Binary Cash Register

Write some code that will display the number in binary when you press the A button. •

Think of a way to create more place values, perhaps by using a second micro:bit and a

Radio connection.

•

Extra Mods

Write a program that will display the correct time (once set) on the micro:bit. •

The 3-4 numbers displayed will be in binary (not decimal).•

To make the strap of the wristwatch, put 2 pieces of duct tape back-to-back, and use

velcro tabs as the fasteners

•

Optional Project: Build a Binary Wristwatch

 09.Bits Bytes Binary Page 163

Reflection:

Have students write a reflection of about 150–300 words, addressing the following points:

What were the Variables that you used to keep track of information?•

What mathematical operations did you perform on your variables? •

What information did you provide?•

Describe what the physical component of your micro:bit project was (e.g., an armband, a

wallet, a holder, etc.)

•

How well did your prototype work? What were you happy with? What would you change?•

What was something that was surprising to you about the process of creating this project?•

Describe a difficult point in the process of designing this project, and explain how you

resolved it.

•

Assessment

4 3 2 1

Binary

display

All binary numerals

display correctly

At least 2 binary

numerals display

correctly

At least 1 binary

numeral displays

No binary numerals

display correctly.

Micro:bit

program

Micro:bit program:

Uses binary in a way

that is integral to the

program

•

Uses mathematical

operations to add,

subtract multiply,

and/or divide variables

•

Compiles and runs as

intended

•

Meaningful comments

in code

•

Micro:bit

program lacks 1

of the required

elements

Micro:bit

program lacks 2

of the required

elements

Micro:bit program

lacks 3 or more of

the required

elements

Reflection Reflection piece

includes:

Reflection piece

lacks 1 of the

Reflection piece

lacks 2 of the

Reflection piece

lacks 3 of the

 09.Bits Bytes Binary Page 164

includes:

Brainstorming ideas•

Construction•

Programming•

Beta testing•

lacks 1 of the

required

elements.

lacks 2 of the

required

elements.

lacks 3 of the

required elements.

How could you use a row of flashlights to represent a number to someone else far away? •

How might you use those flashlights to send a message?•

Additional Questions to Ponder

https://www.mathsisfun.com/binary-number-system.html•

Resources

 09.Bits Bytes Binary Page 165

https://www.mathsisfun.com/binary-number-system.html

CSTA K-12 Computer Science Standards

CT.L1:3-05 Demonstrate how 0s and 1s can be used to represent information.•

CT.L1:6-03 Demonstrate how a string of bits can be used to represent alphanumeric

information.

•

CT.L2-14 Examine connections between elements of mathematics and computer science,

including binary numbers, logic, sets and functions.

•

CT.L3B-07 Discuss the interpretation of binary sequences in a variety of forms (e.g.,

instructions, numbers, text, sound, image).

•

CPP.L1:6-06 Implement problem solutions using a block-based visual programming

language.

•

Standards

 09.Bits Bytes Binary Page 166

https://www.csteachers.org/?page=CSTA_Standards

This lesson covers the use of more than one micro:bit to share and combine data. Students will explore a

complex epidemiological program (Infection) that demonstrates the Radio functionality of the micro:bit.

Students will send and receive numbers and strings in a series of guided activities. Finally, students are

asked to collaborate so that they can share their micro:bits and create a project together.

Lesson Objectives:

Understand how to use the Radio blocks to send and receive data between micro:bits•

Understand the specific types of data that can be sent over the Radio•

 …

Introduction: Radio & Communication•

Unplugged Activity: Infection Simulation•

Micro:bit Activity: Marco Polo & Morse Code•

Project: Radio•

Assessment: Rubric •

Standards: Listed•

Lesson Plan Structure

Introduction

Up to this point, we have been primarily challenging students to collaborate while they create their own

projects. This lesson, on communication using the micro:bit radio, is a great opportunity to have students

work in pairs on a project. Have kids find a partner to work with for this lesson, and make sure they are

seated next to each other.

N “ ”

collaborate when programming. Two students share one computer, with one student at the keyboard

acting as the driver, and the other student providing directions as the navigator. Students must practice

good communication with each other throughout the entire programming process.

The micro:bit allows you to communicate with other micro:bits in the area using the blocks in the Radio

category. You can send a number, a string (a word or series of characters) or a string/number combination

in a radio packet. You can also give a micro:bit instructions on what to do when it receives a radio packet.

 “ ” ,

Radio and Communication

 10.Radio Page 167

https://makecode.microbit.org/projects/infection

 “ ” ,

advanced simulation. The code is quite complex, so students will focus more on how to use the micro:bits

to explore aspects of viruses and epidemics, than the intricacies of the code itself.

The project for this lesson will challenge students to work together to send and receive some sort of data

to and from each other. There is a wide range of simple and complex projects kids can try, but whatever

they choose it is a whole lot of fun to communicate with each other using the micro:bits!

 10.Radio Page 168

For this activity, each student will need a micro:bit and battery pack, as well as the teacher who will be the

Master controller.

Setup: Set up the code on all micro:bits•

Explore: Let students experience the game first•

Discuss: Talk about observations, theories, propose strategies•

Test: Play again, testing different strategies and approaches for containing outbreak•

There are four parts to this unplugged activity:

Develop a common working vocabulary for talking about disease spread•

Make inferences based on observation•

Propose and test original hypotheses to explain complex behavior•

Explore a professionally developed micro:bit simulation•

The goals of this activity are:

Setup

This site is the home page for the Infection game:

https://pxt.microbit.org/projects/infection

On that page you should be able to copy the JavaScript code, then go to your MakeCode JavaScript editor and

paste the JavaScript code into the window.

Then click the Download button to download this program onto your micro:bit. This code should be

 ’

 I ’ , !

game, the teacher should press the A + B buttons on his or her device. This will register all of the student

 ’

Explore

In this phase, students should just play the game to get a feel for how it works. The object of the game is to

meet as many people as possible without getting sick. If at any time players decide to stop meeting people,

they should sit down and cover their micro:bit.

To start the game, students should take their devices and spread out. When everyone is ready to begin, the

teacher should press the A + B buttons again. All of the student devices will show a unique player icon.

One of the players is randomly chosen to have a virus that is transmitted when they meet other players. Players

can meet each other by going up to another player and placing the two devices next to each other. Players who

are healthy, or who are infected but are not showing symptoms yet, will have a smile. Once a player is sick, their

micro:bit will display a frowny face.

Unplugged: Infection Simulation

 10.Radio Page 169

https://pxt.microbit.org/projects/infection

micro:bit will display a frowny face.

After a certain period of time being sick, the player dies and the micro:bit will display a skull icon. That player

should sit down and wait for the game to end, when all players are dead or the virus stops spreading.

Discuss

Did anyone manage to stay healthy? If so, how? If not, why not?•

How do you think the disease spread?•

Who do you think started it?•

What could we do to find out?•

What strategies might we adopt next time, to have a better outcome?•

After one round, it is good to have a discussion with the players:

Test

What strategies worked well? •

Which strategies seemed like a good idea at the time, but in practice, were less effective? Why? •

Are there any real-world situations that this might remind you of?•

Play the game one more time, or more depending on available time, and attempt to test some of the theories

students came up with.

Vocabulary

As students talk through their theories, they will often talk about a scientific idea without knowing the specific

word for it. This presents a nice opportunity, once students have surfaced an idea, to give it a proper name so

that you can start to develop a common working vocabulary for talking about the problem.

Asymptomatic: Someone who has the virus but is not showing outward symptoms of being sick.•

Carrier: Someone who has the virus and can transmit it to others.•

Immunity: Someone who cannot contract or transmit the virus.•

Incubation: The period of time between when a person contracts the virus and when the person starts to

show symptoms of being sick.

•

Inoculation: Make someone immune to the virus.•

Patient Zero: The first person to introduce a virus to a community.•

Quarantine: A strategy to isolate those who are suspected of carrying a virus•

Here are some common terms that come up in discussion:

Reference

This game is a distributed simulation of a viral outbreak. It is modeled after the Thinking Tags participatory

simulations developed at MIT Media Lab. Participatory Simulations have been found to enhance student

understanding of complex dynamic relationships, inquiry skills, and scientific understanding. (Colella, V. (2000).

Participatory Simulations: Building Collaborative Understanding Through Immersive Dynamic Modeling. Journal

of the Learning Sciences, 9(4), 471–500. http://doi.org/10.1207/S15327809JLS0904_40\)

 10.Radio Page 170

http://doi.org/10.1207/S15327809JLS0904_40/

Guide the students in creating programs that use the radio communication blocks to send and receive data

between two micro:bits.

When using the radio blocks, the micro:bit simulator will show two micro:bits •

In the simulator, a radio transmission icon will appear in the top right corner of the micro:bit. The icon will

light up as the micro:bit is transmitting data.

•

In the simulator, all the code in the coding workspace runs on both virtual micro:bits. You should include for

how to send data as well as what to do when it receives data.

•

Notes:

Marco Polo

Send and receive strings between micro:bits.

On button A pressed, we will send the string Marco and on button B pressed we will send the string Polo.

When communicating between micro:bits, it is important that the micro:bits involved are all using the same

group ID. So, the first thing we will do is set the group ID number.

•

From the Radio menu, drag a 'radio set group' block to the coding workspace and place the block into the on

start block.

•

In the 'radio set group block', leave the default value of 1 for the group ID•

radio.setGroup(1)

Drag 2 'on button pressed' blocks to the coding workspace•

Leave one with the default value A and change the other button to B •

From the Radio Toolbox drawer, drag 2 'radio send string' blocks to the coding workspace•

Place one 'radio send string' block into the 'on button A pressed' block, and the other 'radio send string'

block into the 'on button B pressed' block

•

In the 'on button A pressed' block, change the default empty string value of the 'radio send string' block to

the string "Marco"

•

In the 'on button B pressed' block, change the default empty string value of the 'radio send string' block to

the string "Polo"

•

input.onButtonPressed(Button.A, () => {
 radio.sendString("Marco")
})
input.onButtonPressed(Button.B, () => {
 radio.sendString("Polo")
})

To display the data sent between the micro:bits, drag an 'on radio received receivedString' block to the

Activity: Marco Polo and Morse Code

 10.Radio Page 171

To display the data sent between the micro:bits, drag an 'on radio received receivedString' block to the

coding workspace

•

From the Basic Toolbox drawer, drag a 'show string' block into the 'on radio received receivedString' block•

From the Variables Toolbox drawer, drag a 'receivedString' variable block into the default string value of

"Hello" in the 'show string' block

•

Here is the complete Marco Polo program:

input.onButtonPressed(Button.A, () => {
 radio.sendString("Marco")
})
radio.onDataPacketReceived(({ receivedString }) => {
 basic.showString(receivedString)
})
input.onButtonPressed(Button.B, () => {
 radio.sendString("Polo")
})
radio.setGroup(1)

MarcoPolo

 10.Radio Page 172

https://makecode.microbit.org/12759-98799-02560-66297

Add a 'show leds' block to the 'on start' block. We created an image of the initials MP.•

From the Music Toolbox drawer, drag 2 'play tone' blocks to the coding workspace. See

https://makecode.microbit.org/projects/hack-your-headphones for how to connect a speaker or headphones

to the micro:bit.

•

Drag one of the 'play tone' blocks to the 'on button A pressed' block, and the other one to the 'on button B

pressed' block.

•

Change the default value in the 'play tone' block that is inside the 'on button A pressed' block to the value

Low C.

•

Mods

Complete Marco Polo program with mods:

input.onButtonPressed(Button.A, () => {
 radio.sendString("Marco")
 music.playTone(131, music.beat(BeatFraction.Whole))
})
radio.onDataPacketReceived(({ receivedString }) => {
 basic.showString(receivedString)
})
input.onButtonPressed(Button.B, () => {
 radio.sendString("Polo")
 music.playTone(262, music.beat(BeatFraction.Whole))
})
radio.setGroup(1)
basic.showLeds(`
 # . # # #

 10.Radio Page 173

https://makecode.microbit.org/projects/hack-your-headphones

 # . # # #
 # # # # #
 # . # # #
 # . # # .
 # . # # .
 `)

MarcoPoloMods

Morse Code

Send and receive numbers between micro:bits.

Depending on the button pressed, send a different number value between micro:bits. On receiving a number,

display a different image unique to the number sent. One number will represent a dot, another a dash and another

a space or stop.

 10.Radio Page 174

https://makecode.microbit.org/83530-93274-19017-24973

Set the group ID number.•

Add a 'show string' block to the 'on start' block, to identify the program. •

We choose to change the default string value of "Hello" to the value "Morse Code"•

radio.setGroup(1)
basic.showString("Morse Code")

Drag 3 'on button pressed' blocks to the coding workspace. •

Leave one with the default value A, change the value in the second block to B, and change the value in the

third block to A+B.

•

From the Radio Toolbox drawer, drag 3 'radio send number' blocks to the coding workspace.•

Place one radio send number block into each of the 'on button pressed' blocks.•

In the 'on button A pressed' block, leave the default number value of the 'radio send number' block as 0.•

In the 'on button B pressed' block, change the default number value of the 'radio send number' block to the

value 1.

•

In the 'on button A+B pressed' block, change the default number value of the 'radio send number' block to

the value 2.

•

input.onButtonPressed(Button.A, () => {
 radio.sendNumber(0)
})
input.onButtonPressed(Button.B, () => {
 radio.sendNumber(1)
})
input.onButtonPressed(Button.AB, () => {
 radio.sendNumber(2)

 10.Radio Page 175

input.onButtonPressed(Button.AB, () => {
 radio.sendNumber(2)
})

From the Radio Toolbox drawer, drag an 'on radio received receivedNumber' event handler to the coding

workspace.

•

Since we will display a different image depending on the number value received, we need a logic block. •

From the Logic Toolbox drawer, drag an 'if...then' block to the coding workspace and place it in the 'on radio

received receivedNumber' event handler.

•

In order to know whether to display a dot, a dash, or a space/stop image, we need to compare the number

received to the values 0, 1, and 2.

From the Logic Toolbox drawer, drag a 0=0 comparison block into the coding workspace.•

Replace the default value 'true' of the 'if...then' block with the comparison block.•

From the Variables Toolbox drawer, drag a 'receivedNumber' variable block into the coding workspace, and

drop it into the first slot of the comparison block

•

Leave the righthand side default value of zero in the 0=0 block. •

radio.onDataPacketReceived(({ receivedNumber }) => {
 if (receivedNumber == 0) {

 }
})

Place a 'show leds' block in the space after the then of the 'if...then' block. •

Create an image to represent a dot.•

radio.onDataPacketReceived(({ receivedNumber }) => {
 if (receivedNumber == 0) {
 basic.showLeds(`

 10.Radio Page 176

 . . # . .
 . # # # .
 . . # . .

 `)
 }
})

Download your program to the micro:bit•

Press button A on the sending micro:bit•

Does this cause a dot to be displayed on the receiving micro:bit? •

However, pressing button A again does not appear to send another dot as the image on the receiving

micro:bit does not appear to change.

•

Try it!

Add a 'pause' block and a 'clear screen' block after the 'show leds' block•

Challenge question: How can we fix this?

radio.onDataPacketReceived(({ receivedNumber }) => {
 if (receivedNumber == 0) {
 basic.showLeds(`

 . . # . .
 . # # # .
 . . # . .

 `)
 basic.pause(1)
 basic.clearScreen()
 }
})

Try running the program again.

Now each time the sender presses button A, you see a dot appear.

 10.Radio Page 177

You can now right- ' … ' D

other 2 values that a sender may send.

•

Change the values on the righthand side of the comparison block to 1, and 2.•

Modify the images displayed to show a dash, and a full screen of lights•

Morse Code Program:

 10.Radio Page 178

radio.onDataPacketReceived(({ receivedNumber }) => {
 if (receivedNumber == 0) {
 basic.showLeds(`

 . . # . .
 . # # # .
 . . # . .

 `)
 basic.pause(100)
 basic.clearScreen()
 }
 if (receivedNumber == 1) {
 basic.showLeds(`

 10.Radio Page 179

 . # # # .

 `)
 basic.pause(100)
 basic.clearScreen()
 }
 if (receivedNumber == 2) {
 basic.showLeds(`
 # # # # #
 # # # # #
 # # # # #
 # # # # #
 # # # # #
 `)
 basic.pause(100)
 basic.clearScreen()
 }
})
input.onButtonPressed(Button.A, () => {
 radio.sendNumber(0)
})
input.onButtonPressed(Button.B, () => {
 radio.sendNumber(1)
})
input.onButtonPressed(Button.AB, () => {
 radio.sendNumber(2)
})
radio.setGroup(1)
basic.showString("Morse Code")

MorseCode

 10.Radio Page 180

https://makecode.microbit.org/58681-38650-36805-80452

Download your program to the micro:bit•

Press buttons A, B, and A+B together on the micro:bit•

Try it!

Whenever you look over a program and see the same lines of code repeated, there is usually a chance to

improve the code making it more efficient by reducing the number of lines of code

•

What lines are repeated in our program? If...then, pause, clear screen •

Can we edit the code to use only one 'if...then' block, one 'pause' block, and one 'clear screen' block? Yes!•

Challenge question: Can our code be made more efficient?

Making our code more efficient

Remind students that they can edit the 'if...then' block, adding as many 'else if' conditions as needed.

They can do this by clicking on the blue gear-wheel icon in the top left corner of the 'if...then' block.

 10.Radio Page 181

A final else

In a conditional that might receive a number of different values, it is good coding practice to have a catch-all 'else'

clause. In our example, if any number value other than the ones we coded for (0,1, and 2) is received, we can signal

the user that an error has occurred by using a 'show icon' block to display an X.

The pause and clear screen

Rather than repeat these lines of code 3 times, we can move the 'pause' block and the 'clear screen' block outside

 ' … '

Now our program runs as we designed it to run and is more efficient, too!

Final Morse Code Program

input.onButtonPressed(Button.A, () => {
 radio.sendNumber(0)
})
input.onButtonPressed(Button.B, () => {

 10.Radio Page 182

input.onButtonPressed(Button.B, () => {
 radio.sendNumber(1)
})
input.onButtonPressed(Button.AB, () => {
 radio.sendNumber(2)
})
radio.onDataPacketReceived(({ receivedNumber }) => {
 if (receivedNumber == 0) {
 basic.showLeds(`

 . . # . .
 . # # # .
 . . # . .

 `)
 } else if (receivedNumber == 1) {
 basic.showLeds(`

 . # # # .

 `)
 } else if (receivedNumber == 2) {
 basic.showLeds(`
 # # # # #
 # # # # #
 # # # # #
 # # # # #
 # # # # #
 `)
 } else {
 basic.showIcon(IconNames.No)
 }
 basic.pause(100)
 basic.clearScreen()
})
radio.setGroup(1)
basic.showString("Morse Code")

MorseCodeFinal

 10.Radio Page 183

https://makecode.microbit.org/01172-80779-30253-45641

 10.Radio Page 184

For this project, students should work in pairs to design a project that incorporates radio communication to send

and receive data in some way. Some projects may have two separate programs: One that receives data, and one that

sends data. Students might each choose to submit one program in that case.

In other cases, a pair of students might submit one program that has both sending and receiving code in it, and the

same code is uploaded to two or more micro:bits.

Project Ideas

Stop, Thief!

Design an alarm system for your bedroom that alerts you with a screen animation when someone opens your door.

You can mount one micro:bit on your door and use the accelerometer to send a signal over the radio when it is

being moved.

Interactive Art

Create a piece of interactive artwork that receives something as input over the radio from another micro:bit, and

displays something based on that as output.

3-Note Keyboard

This is a simple three-note keyboard that uses wooden paint stirrers and copper tape to make a connection to each

of the three pins on the micro:bit.

Keyboard with copper tape connections

When a key is pressed, it sends a number over the radio to a second micro:bit that plays the appropriate tone over a

set of earbuds. This allows you to use each of the three pins on the first micro:bit to play a different tone.

Project: Radio Project

 10.Radio Page 185

Second micro:bit that plays the notes

3-Note Keyboard Program:

let sound = 0
radio.onDataPacketReceived(({ receivedNumber }) => {
 if (receivedNumber == 0) {
 sound = 349
 music.playTone(sound, music.beat(BeatFraction.Half))

 10.Radio Page 186

 music.playTone(sound, music.beat(BeatFraction.Half))
 } else if (receivedNumber == 1) {
 sound = 392
 music.playTone(sound, music.beat(BeatFraction.Half))
 } else if (receivedNumber == 2) {
 sound = 440
 music.playTone(sound, music.beat(BeatFraction.Half))
 }
})
input.onPinPressed(TouchPin.P0, () => {
 sound = 0
 radio.sendNumber(sound)
 basic.showLeds(`
 . . # . .
 . # . # .
 . # . # .
 . # . # .
 . . # . .
 `)
 basic.pause(500)
 basic.clearScreen()
})
input.onPinPressed(TouchPin.P1, () => {
 sound = 1
 radio.sendNumber(sound)
 basic.showLeds(`
 . . # . .
 . # # . .
 . . # . .
 . . # . .
 . # # # .
 `)
 basic.pause(500)
 basic.clearScreen()
})
input.onPinPressed(TouchPin.P2, () => {
 sound = 2
 radio.sendNumber(sound)
 basic.showLeds(`
 . # # # .
 # . . # .
 . . # . .
 . # . . .
 # # # # .
 `)
 basic.pause(500)
 basic.clearScreen()
})
basic.showLeds(`
 # # # # #
 # # # # #

 `)
basic.clearScreen()

3NoteKeyboard

 10.Radio Page 187

https://makecode.microbit.org/83181-49457-60904-39131

Radio Tennis

In this project, the tennis racquets alternate displaying a ball on the micro:bit LED screen. When you swing the

racquet, the ball disappears from one micro:bit display and shows up on the other micro:bit's display.

Radio Tennis racquets (made from cardboard)

Reflection

What kind of Project did you do? How did you decide what to pick?•

How does your project use radio communication?•

Have students write a reflection of about 150–300 words, addressing the following points:

 10.Radio Page 188

•

Are there separate programs for the Sender and the Receiver micro:bits? Or 1 program for both?•

Describe something in your project that you are proud of.•

Describe a difficult point in the process of designing this program, and explain how you resolved it.•

What feedback did your beta testers give you? How did that help you improve your design?•

Assessment

4 3 2 1

Radio Effectively uses the Radio to

send and receive data, with

meaningful actions and

responses for each.

Effectively uses the Radio

to send or receive data,

with meaningful actions

and responses for each.

Use of Radio is

incomplete or non-

functional and/or

tangential to operation

of program

No working

and/or

meaningful use

of Radio.

Micro:bit

program

Micro:bit program:

Uses Radio blocks in a way

that is integral to the

program

•

Compiles and runs as

intended

•

Meaningful comments in

code

•

Micro:bit program lacks 1

of the required elements

Micro:bit program lacks

2 of the required

elements

Micro:bit

program lacks

all of the

required

elements

Collaboration

reflection

Reflection piece includes:

Brainstorming ideas•

Construction•

Programming•

Beta testing•

Reflection piece lacks 1 of

the required elements.

Reflection piece lacks 2

of the required

elements.

Reflection piece

lacks 3 of the

required

elements.

 10.Radio Page 189

CSTA K-12 Computer Science Standards

CL.L2-03 Collaborate with peers, experts, and others using collaborative practices such as

pair programming, working in project teams, and participating in group active learning

activities.

•

CL.L2-04 Exhibit dispositions necessary for collaboration: providing useful feedback,

integrating feedback, understanding and accepting multiple perspectives, socialization.

•

CL.L2-05 Implement problem solutions using a programming language, including: looping

behavior, conditional statements, logic, expressions, variables, and functions.

•

Standards

 10.Radio Page 190

https://www.csteachers.org/?page=CSTA_Standards

This lesson covers storing and retrieving data in an ordered fashion using Arrays. Introduces JavaScript as an

alternate way of creating and modifying code. Uses a melody as a list/array of notes.

Lesson Objectives

Explain the steps they would take to sort a series of numbers•

Recognize three common sorting algorithms•

Learn•

Apply•

 …

Introduction: Arrays•

Unplugged Activity: Different Sorts of People•

Micro:bit Activity: Headband Charades, Starry Starry Night•

Project: Make a Musical Instrument•

Assessment: Rubric •

Standards: Listed•

Lesson Plan Structure

Introduction

Any collector of coins, fossils, or baseball cards knows that at some point you need to have a way to organize

everything so you can find things. For example, a rock collector might have a tray of specimens numbered like this:

Every rock in the collection needs its own storage space, and a unique address so you can find it later.

As your MakeCode programs get more and more complicated, and require more variables to keep track of things,

you will want to find a way to store and organize all of your data. MakeCode provides a special category for just

this purpose, called an Array.

Arrays can store numbers, strings (words), or sprites. They can also store musical notes. •

Every spot in an array can be identified by its index, which is a number that corresponds to its location in the

array. The first slot in an array is index 0, just like our rock collection above.

•

Arrays

 11.Arrays Page 191

array. The first slot in an array is index 0, just like our rock collection above.

The length of an array refers to the total number of items in the array, and the index of the last element in an

array is always one less than its length (because the array numbering starts at zero.)

•

In MakeCode, you can create an array by assigning it to a variable. The Array blocks can be found under the

Advanced Toolbox menu.

list = []
list = [4, 2, 5, 1, 3]

The code above creates an empty array called list, then fills it with five numbers, indexed from 0 to 4. The index of

the first value (4) is 0. The index of the second value (2) is 1. The index of the last value (3) is 4.

You can get items out of the array by specifying its index like this:

input.onButtonPressed(Button.A, () => {
 basic.showNumber(list[0])
})

The code above takes the first element in the array (the value at index 0) and shows it on the screen.

There are lots of other blocks in the Arrays Toolbox drawer. The next few Activities will introduce you to them.

Ask your students if any of them collects anything. What is it? Comic books, cards, coins, stamps, books, etc.•

How big is the collection?

Discussion

 11.Arrays Page 192

How big is the collection? •

How is it organized? •

Are the items sorted in any way? •

How would you go about finding a particular item in the collection?•

Length: the total number of items in the collection•

Sort: Items in the collection are ordered by a particular attribute (e.g., date, price, name)•

Index: A unique address or location in the collection•

Type: The type of item being stored in the collection•

I , ’

collections.

References

Once you start saving lots of different values in an array, you will probably want to have some way to sort those

values. Many languages already implement a sorting algorithm that students can call upon as needed. However,

understanding how those different sorting algorithms work is an important part of computer science, and as

students go on to further study they will learn other algorithms, as well as their relative efficiency.

Visually displays a number of different types of sorts: https://www.youtube.com/watch?v=kPRA0W1kECg•

Bubble-sort with Hungarian folk dance: https://youtu.be/lyZQPjUT5B4•

Select-sort with Gypsy folk dance: https://youtu.be/Ns4TPTC8whw•

Insert-sort with Romanian folk dance: https://youtu.be/ROalU379l3U•

There are some good array sorting videos:

 11.Arrays Page 193

https://www.youtube.com/watch?v=kPRA0W1kECg
https://youtu.be/lyZQPjUT5B4
https://youtu.be/Ns4TPTC8whw
https://youtu.be/ROalU379l3U

In this activity, you will demonstrate different kinds of sorting methods on your own students. This is an

unplugged activity, so your students will be standing at the front of the room. If you or your students are curious

to see what these different sorts look like in code, we have included a MakeCode version of each algorithm in

this lesson, for you to explore if you choose.

Sheets of paper numbered 1–10, one large printed number to a page•

Materials

Have up to ten students (the Sortees) stand up at the front of the classroom. Ask another student to

volunteer to be the Sorter.

•

Mix up the order of the papers and give each student a piece of paper with a number on it. They should

hold the paper facing outward so their number is visible. Each of these students is like an element in an

array.

•

Set Up

Ask the Sorter to place the students in order by directing them to move, one at a time, to the proper place.•

How did she sort you into the right order? ○

Did you see a pattern? ○

What did she do?○

Once the students are sorted, ask students the following:•

Initial Sort

First, she went to the first student, then put him in the right place.•

Then she went to each of the next students and put them in the right place.•

Try to get students to be as precise as possible in explaining their thinking. Sometimes it helps to put the steps

on the board, in an algorithm:

Ask for clarification when necessary: What does it mean when you say “put them in the right place”?

To Put Someone in the Right Place:

Bring the person to the front of the line and then compare that person’s number with the first person’s number. If

it’s larger, then move that person to the right. K eep doing this as long as the person’s number is larger than the

person on the right.

Some Different Types of Sorts

In computer science, there are certain common strategies, or algorithms, for sorting a collection of values. Try

acting out each of these different sorts with your students.

Bubble Sort

Compare the first two students. If the student on the right is smaller than the student on the left, they should

swap places. Then compare the second and third students. If the student on the right is smaller than the student

on the left, they should swap places. When you reach the end, start over at the beginning again. Continue in this

way until you make it through the entire row of students without swapping anybody.

Create a variable called counter.1.

Set the counter to zero.2.

Go through the entire array.3.

In Pseudocode

Unplugged: Different Sorts of People

 11.Arrays Page 194

Go through the entire array.3.

Swap them1.

Add one to counter2.

If the value you are considering is greater than the value to its right:4.

Repeat steps 2 through 4 as long as counter is greater than zero.5.

In MakeCode

Note: Press B to display the array visually. The length of each vertical bar represents each number in the array,

from left to right. Press A to sort the array using Bubble Sort. Press A + B to generate new random numbers for

the array.

let temp = 0
let row = 0
let list: number[] = []
let counter = 0
let column = 0
let index = 0
input.onButtonPressed(Button.AB, () => {
 for (let index = 0; index <= 4; index++) {
 list[index] = Math.random(5) + 1
 }
})
input.onButtonPressed(Button.B, () => {
 basic.clearScreen()
 for (let column = 0; column <= 4; column++) {
 row = 0
 while (row < list[column]) {
 led.plot(column, 4 - row)
 row += 1
 }
 }
})

 11.Arrays Page 195

})
input.onButtonPressed(Button.A, () => {
 while (counter > 0) {
 counter = 0
 for (let index = 0; index <= 3; index++) {
 if (list[index] > list[index + 1]) {
 temp = list[index]
 list[index] = list[index + 1]
 list[index + 1] = temp
 counter += 1
 }
 basic.clearScreen()
 for (let column = 0; column <= 4; column++) {
 row = 0
 while (row < list[column]) {
 led.plot(column, 4 - row)
 row += 1
 }
 basic.pause(100)
 }
 }
 }
})
basic.showLeds(`
 # # # . .
 # . . # .
 # # # . .
 # . . # .
 # # # . .
 `)
list = [4, 2, 5, 1, 3]
counter = 1

BubbleSort

 11.Arrays Page 196

https://makecode.microbit.org/_cYdReo3r586a

Selection Sort

 ’

I , ’

new smallest number and continue in this way until you reach the end of the line of students. Then, move the

person with the smallest number all the way to the left. Then start over from the second person in line. Keep

going, finding the smallest number each time, and making that person the rightmost person in the sorted line of

students.

Find the smallest unsorted value in the array.1.

Swap that value with the first unsorted value in the array.2.

Repeat steps 1 and 2 while the number of unsorted items is greater than zero.3.

In Pseudocode

In MakeCode

Note: The inner loop gets smaller as the sorting algorithm runs because the number of unsorted items decreases

as you go. The index that the inner loop starts at needs to change as the number of sorted items increases, which

is why we have to use a separate counter (item) and compute j every time through the inner loop.

 11.Arrays Page 197

let temp = 0
let j = 0
let min = 0
let row = 0
let list: number[] = []
let item = 0
let column = 0
input.onButtonPressed(Button.B, () => {
 basic.clearScreen()
 for (let column = 0; column <= 4; column++) {
 row = 0
 while (row < list[column]) {
 led.plot(column, 4 - row)
 row += 1
 }
 }
})
input.onButtonPressed(Button.AB, () => {
 for (let index = 0; index <= 4; index++) {
 list[index] = Math.random(5) + 1
 }
})
input.onButtonPressed(Button.A, () => {
 item = 1
 for (let i = 0; i <= 3; i++) {
 min = i
 for (let inner = 0; inner <= 3 - i; inner++) {
 j = inner + item
 if (list[j] < list[min]) {
 min = j
 }
 }
 if (min != i) {
 temp = list[min]
 list[min] = list[i]

 11.Arrays Page 198

 list[min] = list[i]
 list[i] = temp
 }
 item += 1
 basic.clearScreen()
 for (let column = 0; column <= 4; column++) {
 row = 0
 while (row < list[column]) {
 led.plot(column, 4 - row)
 row += 1
 }
 basic.pause(100)
 }
 }
})
basic.showLeds(`
 . . # # .
 . # . . .
 . . # . .
 . . . # .
 . # # . .
 `)
list = []
list = [4, 2, 5, 1, 3]
min = 1

SelectionSort

Insertion Sort

Take the first student on the left and consider that person sorted. Next, take the next student and compare him

to the first student in the sorted section. If he is greater than the first student, then place him to the right of the

student in the sorted section. Otherwise, place him to the left of the student in the sorted section. Continue

down the line, considering each student in turn and then moving from left to right along the students in the

 11.Arrays Page 199

https://makecode.microbit.org/_Wysgi912tKtx

down the line, considering each student in turn and then moving from left to right along the students in the

sorted section until you find the proper place for each student to go, shifting the other students to the right to

make room.

For each element in the unsorted section of the list, compare it against each element in the sorted section

of the list until you find its proper place.

1.

Shift the other elements in the sorted list to the right to make room.2.

Insert the element into its proper place in the sorted list.3.

In Pseudocode:

In MakeCode

let j = 0
let row = 0
let element = 0
let list: number[] = []
input.onButtonPressed(Button.A, () => {
 for (let i = 0; i <= 4; i++) {
 element = list[i]
 j = i
 while (j > 0 && list[j - 1] > element) {
 list[j] = list[j - 1]
 j += -1
 list[j] = element
 }
 basic.clearScreen()
 for (let column2 = 0; column2 <= 4; column2++) {
 row = 0
 while (row < list[column2]) {
 led.plot(column2, 4 - row)
 row += 1
 }
 basic.pause(100)
 }
 }

 11.Arrays Page 200

 }
})
input.onButtonPressed(Button.AB, () => {
 for (let index = 0; index <= 4; index++) {
 list[index] = Math.random(5) + 1
 }
})
input.onButtonPressed(Button.B, () => {
 basic.clearScreen()
 for (let column = 0; column <= 4; column++) {
 row = 0
 while (row < list[column]) {
 led.plot(column, 4 - row)
 row += 1
 }
 }
})
list = []
basic.showLeds(`
 . # # # .
 . . # . .
 . . # . .
 . . # . .
 . # # # .
 `)
list = []
list = [4, 2, 5, 1, 3]
j = 1

InsertionSort

Sidebar

I 8, I B O G ’ O ,

 11.Arrays Page 201

https://makecode.microbit.org/15323-20955-33450-64542

I 8, I B O G ’ O ,

 q W ’ …

https://www.youtube.com/watch?v=k4RRi_ntQc8

 11.Arrays Page 202

https://www.youtube.com/watch?v=k4RRi_ntQc8

Create an array of words that can be used as part of a charades-type game.

This activity is based on a very popular phone app invented by Ellen DeGeneres

(https://bits.blogs.nytimes.com/2013/05/03/ellen-degeneres-iphone-game/).

Create a new variable and give it a name like arrayWords.•

Insert a 'set' variable block into the 'on start' block. •

Change the default variable name to this new variable name.•

From the Array Toolbox drawer, drag a 'create array' block to the coding workspace.•

Attach this array block to the end of the 'set' variable block. •

let arrayWords: string[] = []
arrayWords = ["", ""]

N W ’

Click on the blue gear-wheel icon in the top left corner of the 'create array' block.•

From the pop up window, add as many values (elements) as you'd like to the array block

by dragging the value block from the left side of the window to the array block on the

right side of the window.

•

F , ’ •

Activity: Headband Charades

 11.Arrays Page 203

https://bits.blogs.nytimes.com/2013/05/03/ellen-degeneres-iphone-game/

Drag 4 string blocks from the Text Toolbox drawer, and place them in the empty array

slots.

•

Fill each string with one word. Choose words that will be fun for a game of charades. •

Example:

let arrayWords: string[] = []
arrayWords = ["cat", "guitar", "flashlight", "cupcake", "tree",
"frisbee"]

We can use the 'show string' block from the Basic Toolbox drawer, and the 'on screen up'

Now, we need a way to access one word at a time from this array of words.

 11.Arrays Page 204

We can use the 'show string' block from the Basic Toolbox drawer, and the 'on screen up'

event handler from the Input Toolbox drawer (this is a drop-down menu choice of the 'on

shake' block) to tell the micro:bit to display a word when we tilt the micro:bit up.

•

F , ’

into the array.

•

W ’ ,

you'll need to create an 'index' variable.

•

To start the game with the index at zero, add a 'set' variable block to the 'on' start block.•

an image as a placeholder for when the program has started. Since charades is a

guessing game, we made one that looks like a question mark (?),

○

a countdown to the first word using show number blocks and pause blocks○

And show the first word in the array○

Next, add the following:•

 11.Arrays Page 205

let index = 0
let arrayWords: string[] = []

arrayWords = ["cat", "guitar", "flashlight", "cupcake", "tree",
"frisbee"]
index = 0
basic.showLeds(`
 . # # # .
 . . . # .
 . . # # .

 . . # . .
 `)
basic.pause(100)
basic.showNumber(3)
basic.pause(100)
basic.showNumber(2)
basic.pause(100)
basic.showNumber(1)
basic.showString(arrayWords[index])

 11.Arrays Page 206

So far we have a start to our game and a way to display the first word.

Once that word has been guessed (or passed), we need a way to advance to the next word in

the array.

We can do this by changing the index of the array with the 'on screen down' event handler

from the Input Toolbox drawer (this is a drop-down menu choice of the 'on shake' block)

to advance to the next word when we tilt the micro:bit down

•

input.onGesture(Gesture.ScreenDown, () => {
 index += 1
})

We have a limited number of elements in our array, so to avoid an error, we need to check and

make sure we are not already at the end of the array before we change the index.

Under the Arrays Toolbox drawer, drag out a 'length of' block. The 'length of' block returns

the number of items (elements) in an array. For our array, the length of block will return

the value 6.

•

But because computer programmers start counting at zero, the index of the final (6th)

element is 5.

•

Then change the value of the index by one,□

Else indicate that it is the end of the game.□

If the current value of the index is less than the length of the array minus one*,▪

Check the current value of the index.○

When the player places the micro:bit screen down•

Some pseudocode for our algorithm logic:

Our array has a length 6, so this will mean that as long as the current value of the index is

less than 5, we will change the array by one.

•

 ‘ ’

array makes this code more flexible and easier to maintain. We can easily add more

elements to our array and not have to worry about changing numbers elsewhere in the

code.

•

*Notes:

We can put this all together with an 'if...then...else' block and a 'less than' comparison block from

the Logic Toolbox drawer, a subtraction block from the Math Toolbox drawer, and a 'game over'

block from the Game Toolbox drawer (located under the Advanced menu).

 11.Arrays Page 207

input.onGesture(Gesture.ScreenDown, () => {
 if (index < arrayWords.length - 1) {
 index += 1
 } else {
 game.gameOver()
 }
})

In case a word is already scrolling on the screen when a player places the micro:bit screen

down, we can stop this animation and clear the screen for the next word by using a 'stop

animation' block from the Led More Toolbox drawer, and a 'clear screen' block from the

Basic More Toolbox drawer.

•

input.onGesture(Gesture.ScreenDown, () => {
 led.stopAnimation()
 basic.clearScreen()
 if (index < arrayWords.length - 1) {
 index += 1
 } else {
 game.gameOver()
 }
})

 , ’

Game Play

There are different ways you can play charades with our program. Here is one way you can play

with a group of friends.

 11.Arrays Page 208

with a group of friends.

With the micro:bit on and held so Player A cannot see the screen, another player starts the

program to see the first word.

•

The other players act out this word charades-style for Player A to guess.•

When Player A guesses correctly or decides to pass on this word, a player places the

micro:bit screen down.

•

When ready for the next word, a player turns the micro:bit screen up. Play continues until

all the words in the array have been used.

•

Add a headband to hold the micro:bit on the Players' foreheads (using cardboard, paper,

rubber bands, etc.)

•

Add a way to keep score•

Keep track of the number of correct guesses and passes•

Add a time limit•

Mod this!

Headband Charades Complete Program (simple version - no time limit or scoring)

let index = 0
let arrayWords: string[] = []

 11.Arrays Page 209

let arrayWords: string[] = []
input.onGesture(Gesture.ScreenUp, () => {
 basic.showString(arrayWords[index])
})
input.onGesture(Gesture.ScreenDown, () => {
 led.stopAnimation()
 basic.clearScreen()
 if (index < arrayWords.length - 1) {
 index += 1
 } else {
 game.gameOver()
 }
})
arrayWords = ["cat", "guitar", "flashlight", "cupcake", "tree", "frisbee"]
index = 0
basic.showLeds(`
 . # # # .
 . . . # .
 . . # # .

 . . # . .
 `)
basic.pause(100)
basic.showNumber(3)
basic.pause(100)
basic.showNumber(2)
basic.pause(100)
basic.showNumber(1)
basic.showString(arrayWords[index])

Charades

 11.Arrays Page 210

https://makecode.microbit.org/22678-34340-18831-73648

This is a project in which students are challenged to create a musical instrument that uses arrays

to store sequences of notes. The array of notes can be played when an input occurs, such as one

of the buttons being pressed, or if one or more of the pins is activated.

Ideally, the micro:bit should be mounted in some kind of housing, perhaps a guitar shape or a

music box. Start by looking at different kinds of musical instruments to get a sense of what kind

of shape you might want to build around your micro:bit.

Here are some examples of guitars that were made out of cardboard and colored, patterned

duct tape that you can buy in craft stores.

Example Guitar Code

This is an example of a project that uses the micro:bit accelerometer to play different tones

when the guitar is held and tilted while playing. Pressing the A button will save the current tone

to an array. After ten tones, a repeating melody will be performed. Press the B button to clear

the array and start over.

Song-Maker

Project: Musical Instrument

 11.Arrays Page 211

let currentNote = 0
let list: number[] = []
basic.forever(() => {
 if (list.length < 10) {
 currentNote = input.acceleration(Dimension.X) + 1300
 music.ringTone(currentNote)
 } else {
 basic.showLeds(`
 . . # . .
 . # . # .
 # . . . #
 . # . # .
 . . # . .
 `)
 for (let value of list) {
 music.playTone(value, music.beat(BeatFraction.Whole))
 }
 }
})
input.onButtonPressed(Button.A, () => {
 if (list.length < 10) {
 list.push(currentNote)
 basic.showNumber(10 - list.length)
 }
})
input.onButtonPressed(Button.B, () => {
 list = []
 basic.clearScreen()
})

SongMaker

 11.Arrays Page 212

https://makecode.microbit.org/_c9fHbbd38A1L

Using Arrays with Musical Notes

You can create an array of notes by attaching Music blocks to an array. Musical notes are

described in words (e.g., Middle C, High C) but they are actually numbers. You can do Math

operations on those numbers to change the pitch of your song.

Here is an example of how to create an array with musical notes. Button A plays every note in

the array. Button B plays the notes at twice the frequency (but doesn't alter the original notes.)

let list: number[] = []
let value = 0
input.onButtonPressed(Button.A, () => {
 for (let value of list) {
 music.playTone(value, music.beat(BeatFraction.Whole))
 }
 basic.pause(1000)
})

 11.Arrays Page 213

})
input.onButtonPressed(Button.B, () => {
 for (let value of list) {
 music.playTone(value * 2, music.beat(BeatFraction.Whole))
 }
 basic.pause(1000)
})
list = [262, 392, 330, 392, 262]

Remember that a 'for element value of list' loop makes a temporary copy of the value, so even if

you change a value, it will not change the original element in the array. If students want to

permanently change the values in their array (transpose music to increasingly higher keys, for

example) they can use a for loop like this:

let list: number[] = []
input.onButtonPressed(Button.AB, () => {
 for (let index = 0; index <= list.length - 1; index++) {
 list[index] = list[index] * 2
 }
})

MusicArray

 11.Arrays Page 214

https://makecode.microbit.org/51863-67270-36165-69824

Reflection

Explain how you decided on your musical instrument. What brainstorming ideas did you

come up with?

•

What properties does it share with a real musical instrument? What is unique?•

Describe the type of array you used (Numbers, Strings, or Notes) and how it functions in

your project.

•

What was something that was surprising to you about the process of creating this

program?

•

Describe a difficult point in the process of designing this program, and explain how you

resolved it.

•

What feedback did your beta testers give you? How did that help you improve your

musical instrument?

•

Have students write a reflection of about 150–300 words, addressing the following points:

Assessment:

4 3 2 1

Array Stores and

iterates

through each

element of the

array

successfully

Stores each

element of the

array successfully

Array skips values

or has other

problems with

storing and/or

retrieving

elements

Array doesn't work at

all or no array

present

Micro:bit

program

Uses at least

one array in a

fully

integrated

and

meaningful

way

•

Compiles and

runs as

intended

•

Meaningful

comments in

code

•

Uses an array in a

tangential way that

is peripheral to

function of project

and/or program

lacks 1 of the

required elements

Array is poorly

implemented

and/or peripheral

to function of

project, and/or

lacks 2 of the

required elements

Micro:bit program

lacks 3 or more of

the required

elements

Collaboration

reflection

Reflection

piece

includes:

Brainstormin

g ideas

•

Construction•

Programming•

Beta testing•

Reflection piece

lacks 1 of the

required elements.

Reflection piece

lacks 2 of the

required

elements.

Reflection piece

lacks 3 of the

required elements.

 11.Arrays Page 215

CSTA K-12 Computer Science Standards

CT.L1:6-02 Develop a simple understanding of an algorithm using computer-free exercise•

CPP.L1:6-05 Construct a program as a set of step-by-step instructions to be acted out•

2-A-2-1 Solicit and integrate peer feedback as appropriate to develop or refine a program•

2-A-6-10 Use an iterative design process (e.g., define the problem, generate ideas, build,

test, and improve solutions) to solve problems, both independently and collaboratively.

•

CT.L3B-06 Compare and contrast simple data structures and their uses (e.g., arrays and lists). •

CL.L2-05 Implement problem solutions using a programming language, including: looping

behavior, conditional statements, logic, expressions, variables, and functions.

•

Standards

 11.Arrays Page 216

https://www.csteachers.org/?page=CSTA_Standards

In this unit, we will be reviewing the concepts we covered in the previous weeks, and providing

some ideas for an independent final project that students can focus on in the next several

weeks. We will also provide a rubric for keeping students on task and tracking the learning that

they are doing as they work on their projects. This is an expanded version of the process

students followed in the Mini-Project, in Lesson 6.

Students are asked to create an independent project that demonstrates the use of something

they have already learned, something they went out and researched for themselves, something

they borrowed from somewhere else (with citations) and something completely original. They

are also asked to document their learning process throughout the next couple of weeks using

an independent project framework that emphasizes metacognitive development and process-

oriented work.

Introduction

 12.Final Project Page 217

 12.Final Project Page 218

Here is a brief review of the topics we covered in lessons 7–12

Coordinate Grid and LEDs

The micro:bit’s 25 LEDs are arranged in a 5x5 grid, with the origin at the top left. Values for both the x and y axes

start at zero and increase as you move down and to the right. Individual LEDs can be turned off and on by

specifying a pair of coordinates. The current value of an LED can be checked, and its brightness can be changed,

as well.

Booleans

A Boolean is a data type that only has two possible values: True or False. You can use boolean variables to keep

track of the state of a game (gameOver is either true or false) or check to see whether a certain action has taken

place yet (messageSent is either true or false). Boolean operators such as AND OR and NOT allow you to

combine boolean expressions to make more complex conditions.

Bits, Bytes, and Binary

Computers work with base-2, which uses binary numbers. Binary numbers only have two possible values: 0 or 1.

Radio Communication

Micro:bits can send a combination of strings and numbers using the Radio blocks. The Infection activity is an

example of a thought-provoking group simulation that uses the Radio to send and receive data between

micro:bits.

Arrays

Arrays in MakeCode are used to store and retrieve numbers, strings, musical notes, or sprites. Everything in a

particular array needs to be the same data type and elements in an array are numbered starting from zero, also

called the index. Objects can be accessed, changed, added to, or removed from an array using their index. Three

common methods of sorting elements in an array are bubble sort, selection sort, and insertion sort.

Review

 12.Final Project Page 219

The final project is a chance for you to use all of the skills you have been learning throughout the semester to create something

that is original, and that solves a problem or serves a purpose.

Create a game•

Create something that helps somebody by solving a problem•

Create something beautiful•

Create a musical instrument•

Possible ideas

In addition, your project code must do each of the following things:

Show something you already know

You should demonstrate your knowledge of one or more concepts we have covered in these lessons.

Show something new

You should demonstrate a technique, efficiency, or block that you went out and learned how to do on your own, either from the

documentation, or from another classmate.

Incorporate a maker component

You should not create a project that exists solely and independently on the micro:bit. Your project should work together with

tangible components such as servos, real buttons, switches, to do something unique.

Timeframe

Three weeks of in-class work and activities

2–3 work logs•

1 Record of Thinking•

Due each week:

Beta testing period•

Final Narrative•

Final Project Code•

Final project showcase and celebration at the end•

Due in three weeks:

50% Process (initial proposal, work logs, records of thinking, final narrative)•

50% Product (project code and maker component)•

Assessment:

Teacher Note: This form of assessment places just as much weight on documenting the process of designing the project, as it

does on the finished product itself. This is because in my classroom I want to prioritize "sustained effort over an extended period

of time" over a project that might have resulted from three all-nighters in the final week it is due.

However, you may decide to assign more or less weight to each of these pieces, and you should certainly feel free to scale up or

down the documentation piece as appropriate for your classroom, grade level, and teaching priorities.

While Working on the Project

The expectation is that you are working steadily on your independent project for three weeks, testing out ideas, trying things

out, getting stuck, and getting yourself unstuck. Because everyone is working on a different project, we can't assign the same

homework to everybody so besides the project work itself, you are also responsible for documenting the work you are doing on

the project using work logs, and reflecting on the process of your learning in a record of thinking. Here are more details on

these.

Work Logs

Final Project

 12.Final Project Page 220

Work Logs

 , , I ’ ake more

than thirty seconds or so to write up a work log. Students should do one for every class, several times a week. A shared Microsoft

OneNote notebook is a great way to keep a work log that students can update regularly. Alternately, you might use a

collaborative shared document, or your classroom management system, or even e-mail.

Flappy Dino Project

3/31: 45 min. Worked on attaching cardboard arm to servo and mounting servo to inside

4/1: 30 min. Looked up documentation on talking to NeoPixel strip, worked through demos

4/3: 45 min. Hot glued NeoPixel strip to outside of dinosaur, finished painting

4/4: 30 min. Coded lighting patterns in pxt.

Sample Work Log:

Teacher Note: We generally don't accept late work logs. If a student simply didn't have time to do any work on the project, he

should still file a work log, and report that no work got done. Work logs are worth a few points each, so missing one or two isn't

a problem, but if it happens a lot it's usually time to do a check-in with that student and see where she is with the project.

Record of Thinking

A Record of Thinking is like a journal entry (or like the reflection that you did for the mini-project) that tells the story of your

learning throughout the past week. Go through your work logs for the week and look at what you did, where you got stuck, and

how you figured it out.

Describe something that surprised you this week as you worked on your project.•

Describe a moment where you go stuck. How did you get unstuck?•

Did anyone help you this week? Who and how?•

Choose an adjective that describes how you are feeling about your project this week. Explain why you chose this word.•

What are you working on next week? (for weeks 1 and 2)•

If you had more time to work on this project, what would you add? (for week 3)•

Then write a 150- to 300-word Record of Thinking addressing the following:

Week of April 6

I guess I would choose the word "elated" because that's what I am feeling right now. After Mr. Kiang helped me figure out why

my code wasn't working I was able to see it working exactly how I pictured it last week! That was a great moment. I was

surprised how hard writing code that works is. I planned out the steps I wanted it to do but I didn't realize that the loops had

to be nested one inside the other so I was stuck for a while. It always seems more simple than it is, that's one thought I will

take into next week. Now I have the head attached to the body and the jaws work. I'm going to keep trying to get the lights

working.

Sample Record of Thinking Excerpt:

Teacher Note: A Record of Thinking is not an expanded work log! Students will sometimes just write a more detailed list of all of

the tasks they completed over the week, and that's not the point of the Record of Thinking. The Work Logs are to show WHAT

you did. The Record of Thinking is to show HOW you learned how to do it. Unlike Work Logs, I will accept late Records of

 ’ R I

documentation of the learning process.

Turning in the Final Project

When you turn in the final project, you should turn in your code, and a final narrative.

To turn in your code, you can Share the code by clicking the Share button at the top of the MakeCode window (next to Projects).

You acknowledge that you have consented to sharing your code by clicking Publish project.

 12.Final Project Page 221

You can then copy the URL, paste it into a OneNote page, or send it to your teacher.

You also need to create a written final narrative to accompany your code.

You have worked for the past three weeks to propose, design, and test an original micro:bit independent project. I am looking

for an honest, accurate assessment of your work over this time.

Please go back and read through all of your Work Logs, Records of Thinking, Beta Testing feedback, and any notes from teacher

conferences.

How did you start the process of designing the product/meeting your goals?•

What did you hope to learn?•

What challenges did you face? How did you overcome them?•

What was the outcome?•

What did you learn in the end?•

Who in the class provided help to you along the way? How?•

What were you proud of?•

What would you do differently next time?•

Then, compose a comprehensive narrative that tells the story of the development of this app, and your progress toward your

goals along the way. How you tell the story is up to you, but you might consider following most, if not all, of the following

questions:

Throughout your narrative, you must cite evidence from your work logs and records of thinking (e.g., Record of Thinking 4/17,

Work Log #3, Conference notes, etc.) You may use footnotes for this or add it in parentheses after the material you are citing.

I will read this carefully and grade it along with your final project code and average it with the total of your work logs and

records of thinking to come up with your final grade for the project.

It’s clear to me now that in the second week, I was a little lost and confused with the direction my project was taking. I can see

now that in my chats with Mr. Kiang and with classmates (Conference Notes 4/3) I was not being very precise in my questions,

and I didn’t totally understand what he was explaining.

Sample Final Narrative:

 12.Final Project Page 222

Looking back, one of my goals was to meet more regularly with my table mates. Hopefully I would be a lot less confused and

at least this time when I got stuck, we would be able to solve it together. I wrote about this in my Record of Thinking (Record

of Thinking #2) but I am surprised that things cleared up for me so quickly once we did start meeting together. This allowed

me to get past something that was really bothering me, specifically adding and removing things from an array, and I was able

to complete that in less than a day after having been stuck for more than a week (Work Log #4).

Once I started to get a little more clear on what to do, I was able to get more effective help from my classmates. Specifically,

Jordan helped me a lot with figuring out how to get an image to display properly on the screen. He also showed me how to

search through the online documentation more effectively. I think if I could do this over again, I would have scheduled more

time earlier to meet with Mr. Kiang and/or found a better way to share the different online sites with my table mates because

we all found different places to go. I didn’t even find out until the end that you could jump into JavaScript to make changes to

the code, and it makes it all with the right blocks when you go back! (Beta Testing notes) That would have saved me a lot of

time.

Beta Testing

Beta testing is an important part of testing the final projects to uncover bugs or design issues that could make the projects

difficult to use. One way to test the projects is to ask all students to come in to class on a specific day with the projects ready to

test. This is not the final deadline, but projects should be "feature-complete" i.e., all features need to be incorporated into the

micro:bit, and the construction of the real world elements of the project need to be done or almost done.

Students can take turns presenting their projects to the entire class, or they can work in pairs to take turns trying their partner's

project out and offering feedback. Students who are being critiqued should take beta testing feedback notes and turn them in as

part of their final project narrative.

Final Showcase

Have a celebration of your students' hard work and hold an event at your school for parents, administrators, and other

community members to appreciate all of the hard work that went into making each of the final projects.

We have found that a "science fair" format works nicely, with students sitting at tables where they can demonstrate their projects

and answer questions. Some schools do a "shark tank" type of event where students take turns "pitching" their project ideas to a

panel composed of local software developers, entrepreneurs, and investors. Either way, a little public recognition of all of your

students' hard work goes a long way!

Assessment

4 3 2 1

Code -

Show what

you know

Code very effectively

demonstrates the use of

previous concept(s). All

variable names are unique

and clearly describe what

information values the

variables hold. Code is

highly efficient.

Code effectively

demonstrates the use of

previous concept(s). Most

variable names are unique

and/or clearly describe

what information values

the variables hold. Code is

mostly efficient.

Code somewhat effectively

demonstrates the use of

previous concept(s). Only

some variable names are

unique and/or clearly

describe what information

values the variables hold.

Code is somewhat efficient.

Code demonstrates the use

of previous concept(s), yet

is not effective. Few or no

variable names are unique

and/or clearly describe

what information values

the variables hold. Code is

not efficient.

Code -

Show

something

new

Code very effectively

demonstrates the use of

new concept(s). All

variable names are unique

and clearly describe what

information values the

variables hold. Code is

highly efficient.

Code effectively

demonstrates the use of

new concept(s).

Most variable names are

unique and/or clearly

describe what information

values the variables hold.

Code is mostly efficient.

Code somewhat effectively

demonstrates the use of

new concept(s). Only some

variable names are unique

and/or clearly describe what

information values the

variables hold. Code is

somewhat efficient.

Code demonstrates the use

of new concept(s), yet is

not effective. Few or no

variable names are unique

and/or clearly describe

what information values

the variables hold. Code is

not efficient.

Maker

component

Tangible component is

tightly integrated with the

micro:bit and each relies

heavily on the other to

Tangible component is

somewhat integrated with

the micro:bit but is not

essential.

Tangible component does

not add to the functionality

of the program.

No tangible component

 12.Final Project Page 223

component heavily on the other to

make the project

complete.

essential.

Work Logs All work logs submitted

on time, and accurate

Two late or missing work

log and/or work logs not

accurate nor sufficiently

detailed.

Four late or missing work

logs and/or work logs not

accurate nor sufficiently

detailed.

More than four late or

missing work logs and/or

not accurate nor sufficiently

detailed.

Final

narrative

Narrative piece is

thoughtful and detailed

and contains all required

elements.

Reflection piece is mostly

thoughtful and/or lacks 1

of the required elements.

Reflection piece is superficial

and lacks 2 of the required

elements.

Reflection piece is trivial

and lacks 3 of the required

elements.

 12.Final Project Page 224

Final Project Examples

Baseball Pitch Counter1.

This project straps to a pitcher's arm and uses the micro:bit accelerometer to record how many pitches

have been thrown in a session.

Micro:bit Wrist-Mounted Step Counter and Compass2.

Examples

 12.Final Project Page 225

This project straps to your wrist, displays a compass that updates as you walk around, and keeps track of

your steps. The micro:bit is elevated to allow room for the battery pack to fit underneath.

Combination Lock Box3.

micro:bit Combination lockbox

This project features a secret combination that opens the top of the box using a servo motor

Violin Tuner4.

 12.Final Project Page 226

https://youtu.be/OXks3MJWhhk

Violin Tuner4.

This project uses a piece of cardboard to mount the micro:bit to the side of a violin. This student wanted to

use it to tune his violin by playing a specific series of tones. The micro:bit displays the note being played.

Trumpet Angle Detector5.

This example was used for Marching Band practice, where students must hold the trumpet at a 15 -degree

angle to avoid hitting the person in front of them or playing directly into their ears. Because the trumpet is

heavy, new trumpet players tend to let the trumpet droop. This displays an icon (a check mark or an X) to

help new trumpet players learn what the proper angle is supposed to feel like.

 12.Final Project Page 227

 12.Final Project Page 228

CSTA K-12 Computer Science Standards

CL.L2-03 Collaborate with peers, experts, and others using collaborative practices such as pair

programming, working in project teams, and participating in group active learning activities.

•

CL.L2-04 Exhibit dispositions necessary for collaboration: providing useful feedback, integrating feedback,

understanding and accepting multiple perspectives, socialization.

•

CL.L2-05 Implement problem solutions using a programming language, including: looping behavior,

conditional statements, logic, expressions, variables, and functions.

•

Standards

 12.Final Project Page 229

https://www.csteachers.org/?page=CSTA_Standards

